Turing patterns in a modified Lotka-Volterra model

被引:33
|
作者
McGehee, EA [1 ]
Peacock-López, E [1 ]
机构
[1] Williams Coll, Dept Chem, Williamstown, MA 01267 USA
基金
美国国家科学基金会;
关键词
predator-prey model; prey-dependent functional response; closure; diffusion-driven instability; Turing structures;
D O I
10.1016/j.physleta.2005.04.098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter we consider a modified Lotka-Volterra model widely known as the Bazykin model, which is the MacArthur-Rosenzweig (MR) model that includes a prey-dependent response function and is modified with the inclusion of intraspecies interactions. We show that a quadratic intra-prey interaction term, which is the most realistic nonlinearity, yields sufficient conditions for Turing patterns. For the Bazykin model we find the Turing region in parameter space and Turing patterns in one dimension. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [1] Turing Patterns for a Nonlocal Lotka-Volterra Cooperative System
    Mi, Shao-Yue
    Han, Bang-Sheng
    Zhao, Yu-Tong
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2021, 28 (04) : 363 - 389
  • [2] Turing Patterns of a Lotka-Volterra Competitive System with Nonlocal Delay
    Han, Bang-Sheng
    Wang, Zhi-Cheng
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (07):
  • [3] BIFURCATIONS, AND TEMPORAL AND SPATIAL PATTERNS OF A MODIFIED LOTKA-VOLTERRA MODEL
    McGehee, Edward A.
    Schutt, Noel
    Vasquez, Desiderio A.
    Peacock-Lopez, Enrique
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (08): : 2223 - 2248
  • [4] PROTECTION ZONE IN A MODIFIED LOTKA-VOLTERRA MODEL
    He, Xiao
    Zheng, Sining
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (07): : 2027 - 2038
  • [5] Turing instability and wave patterns for a symmetric discrete competitive lotka-volterra system
    Han, Yu-Tao
    Han, Bo
    Zhang, Lu
    Xu, Li
    Li, Mei-Feng
    Zhang, Guang
    [J]. WSEAS Transactions on Mathematics, 2011, 10 (05) : 181 - 189
  • [6] Monitoring in a Lotka-Volterra model
    Lopez, I.
    Gamez, M.
    Garay, J.
    Varga, Z.
    [J]. BIOSYSTEMS, 2007, 87 (01) : 68 - 74
  • [7] On perturbation of the Lotka-Volterra model
    El-Owaidy, H.
    Al-Thumairi, A.
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (04) : 557 - 560
  • [8] On solitary patterns in Lotka-Volterra chains
    Zilburg, Alon
    Rosenau, Philip
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (09)
  • [9] STABILITY OF LOTKA-VOLTERRA MODEL
    LADDE, GS
    SATHANANTHAN, S
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1992, 16 (03) : 99 - 107
  • [10] Extinction in the Lotka-Volterra model
    Parker, Matthew
    Kamenev, Alex
    [J]. PHYSICAL REVIEW E, 2009, 80 (02):