Fast Bayesian inference of the multivariate Ornstein-Uhlenbeck process

被引:20
|
作者
Singh, Rajesh [1 ]
Ghosh, Dipanjan [2 ]
Adhikari, R. [1 ,3 ]
机构
[1] Univ Cambridge, Ctr Math Sci, DAMTP, Wilberforce Rd, Cambridge CB3 0WA, England
[2] Jadavpur Univ, Dept Chem Engn, Kolkata 700032, India
[3] HBNI, Inst Math Sci, CIT Campus, Madras 600113, Tamil Nadu, India
关键词
D O I
10.1103/PhysRevE.98.012136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The multivariate Ornstein-Uhlenbeck process is used in many branches of science and engineering to describe the regression of a system to its stationary mean. Here we present an O(N) Bayesian method to estimate the drift and diffusion matrices of the process from N discrete observations of a sample path. We use exact likelihoods, expressed in terms of four sufficient statistic matrices, to derive explicit maximum a posteriori parameter estimates and their standard errors. We apply the method to the Brownian harmonic oscillator, a bivariate Ornstein-Uhlenbeck process, to jointly estimate its mass, damping, and stiffness and to provide Bayesian estimates of the correlation functions and power spectral densities. We present a Bayesian model comparison procedure, embodying Ockham's razor, to guide a data-driven choice between the Kramers and Smoluchowski limits of the oscillator. These provide novel methods of analyzing the inertial motion of colloidal particles in optical traps.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Bai, Yizhou
    Wang, Yongjin
    Zhang, Haoyan
    Zhuo, Xiaoyang
    COMPUTATIONAL ECONOMICS, 2022, 60 (02) : 479 - 527
  • [2] Bayesian Estimation of the Skew Ornstein-Uhlenbeck Process
    Yizhou Bai
    Yongjin Wang
    Haoyan Zhang
    Xiaoyang Zhuo
    Computational Economics, 2022, 60 : 479 - 527
  • [3] Bayesian inference of the fractional Ornstein-Uhlenbeck process under a flow sampling scheme
    Simos, Theodore
    Tsionas, Mike
    COMPUTATIONAL STATISTICS, 2018, 33 (04) : 1687 - 1713
  • [4] Alternative way to derive the distribution of the multivariate Ornstein-Uhlenbeck process
    Vatiwutipong, P.
    Phewchean, N.
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [5] A note on inference for the mixed fractional Ornstein-Uhlenbeck process with drift
    Cai, Chunhao
    Zhang, Min
    AIMS MATHEMATICS, 2021, 6 (06): : 6439 - 6453
  • [6] The Ornstein-Uhlenbeck Dirichlet process and other time-varying processes for Bayesian nonparametric inference
    Griffin, J. E.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (11) : 3648 - 3664
  • [7] Multivariate generalized Ornstein-Uhlenbeck processes
    Behme, Anita
    Lindner, Alexander
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1487 - 1518
  • [8] Relativistic Ornstein-Uhlenbeck process
    Debbasch, F
    Mallick, K
    Rivet, JP
    JOURNAL OF STATISTICAL PHYSICS, 1997, 88 (3-4) : 945 - 966
  • [9] The generalized Ornstein-Uhlenbeck process
    Caceres, MO
    Budini, AA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (24): : 8427 - 8444
  • [10] On Ornstein-Uhlenbeck driven by Ornstein-Uhlenbeck processes
    Bercu, Bernard
    Proia, Frederic
    Savy, Nicolas
    STATISTICS & PROBABILITY LETTERS, 2014, 85 : 36 - 44