Existence theory and Lp estimates for the solution of nonlinear viscous wave equation

被引:22
|
作者
Deng, Shijin [1 ]
Wang, Weike [1 ]
Zhao, Hualei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Viscous wave equation; Long wave-short wave decomposition; Green's function; Energy method; Global existence; L-p estimates; EULER EQUATIONS; DECAY PROBLEM; MULTIDIMENSIONS; DIMENSIONS; VISCOSITY; SPACE;
D O I
10.1016/j.nonrwa.2010.05.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global existence of the Cauchy problem for the nonlinear viscous wave equation. We apply the approach introduced in Li and Chen (1989)[15] and get the global existence theory directly by using the decaying properties of the solution. Such properties are obtained by long wave-short wave decomposition, Green's function method and energy estimates. Finally, we show the L-p estimates for the solution by interpolation lemma. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4404 / 4414
页数:11
相关论文
共 50 条