Minimizing movements for mean curvature flow of droplets with prescribed contact angle

被引:6
|
作者
Bellettini, G. [1 ,2 ]
Kholmatov, Sh Yu [2 ,3 ,4 ]
机构
[1] Univ Siena, Dipartimento Ingn Informaz & Sci Matemat, Via Roma 56, I-53100 Siena, Italy
[2] Abdus Salaam Int Ctr Theoret Phys, Str Costiera 11, I-34151 Trieste, Italy
[3] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[4] Univ Vienna, Dept Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
关键词
Mean curvature flow with prescribed contact angle; Sets of finite perimeter; Capillary functional; Minimizing movements; GENERALIZED MOTION; TRIPLE JUNCTIONS; SURFACES; REGULARITY; EVOLUTION; EXISTENCE; GRAPHS; MODEL;
D O I
10.1016/j.matpur.2018.06.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mean curvature motion of a droplet flowing by mean curvature on a horizontal hyperplane with a possibly nonconstant prescribed contact angle. Using the solutions constructed as a limit of an approximation algorithm of Almgren-Taylor-Wang and Luckhaus-Sturzenhecker, we show the existence of a weak evolution, and its compatibility with a distributional solution. We also prove various comparison results. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1 / 58
页数:58
相关论文
共 50 条