A novel feature selection based semi-supervised method for image classification

被引:0
|
作者
Tahir, M. A. [1 ]
Smith, J. E. [1 ]
Caleb-Solly, P. [1 ]
机构
[1] Univ W England, Sch Comp Sci, Bristol BS16 1QY, Avon, England
来源
COMPUTER VISION SYSTEMS, PROCEEDINGS | 2008年 / 5008卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automated surface inspection of products as part of a manufacturing quality control process involves the applications of image processing routines to segment regions of interest (ROI) or objects which correspond to potential defects on the product or part. In these type of applications, it is not known in advance how many ROIs may be segmented from images, and so classification algorithms mainly make use of only image-level features, ignoring important object-level information. In this paper, we will investigate how to preprocess high-dimensional object-level features through a unsupervised learning system and present the outputs of that system as additional image-level features to the supervised learning system. Novel semi-supervised approaches based on K-Means/Tabu Search(TS) and SOM/Genetic Algorithm (GA) with C4.5 as supervised classifier have been proposed in this paper. The proposed algorithms are then applied on real-world CD/DVD inspection system. Results have indicated an increase in the performance in terms of classification accuracy when compared with various existing approaches.
引用
收藏
页码:484 / 493
页数:10
相关论文
共 50 条
  • [1] POLSAR IMAGE CLASSIFICATION BASED-ON SEMI-SUPERVISED POLARIMETRIC FEATURE SELECTION
    Huang, Xiayuan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 196 - 200
  • [2] BASSUM: A Bayesian semi-supervised method for classification feature selection
    Cai, Ruichu
    Zhang, Zhenjie
    Hao, Zhifeng
    PATTERN RECOGNITION, 2011, 44 (04) : 811 - 820
  • [3] A Flexible Semi-supervised Feature Extraction Method for Image Classification
    Dornaika, Fadi
    El Traboulsi, Youssof
    COMPUTER VISION - ACCV 2014 WORKSHOPS, PT III, 2015, 9010 : 122 - 137
  • [4] Semi-supervised Feature Selection for Gender Classification
    Wu, Jing
    Smith, William A. P.
    Hancock, Edwin R.
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 23 - 33
  • [5] A HYPERGRAPH BASED SEMI-SUPERVISED BAND SELECTION METHOD FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Guo, Zhouxiao
    Bai, Xiao
    Zhang, Zhihong
    Zhou, Jun
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3137 - 3141
  • [6] A semi-supervised network based on feature embeddings for image classification
    Nuhoho, Raphael Elimeli
    Chen Wenyu
    Baffour, Adu Asare
    EXPERT SYSTEMS, 2022, 39 (04)
  • [7] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Du, Wei
    Phlypo, Ronald
    Adali, Tulay
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2019, 91 (05): : 521 - 537
  • [8] Adaptive Feature Selection and Feature Fusion for Semi-supervised Classification
    Wei Du
    Ronald Phlypo
    Tülay Adalı
    Journal of Signal Processing Systems, 2019, 91 : 521 - 537
  • [9] Manifold Based Fisher Method for Semi-Supervised Feature Selection
    Lv, Sunzhong
    Jiang, Hongxing
    Zhao, Li
    Wang, Di
    Fan, Mingyu
    2013 10TH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (FSKD), 2013, : 664 - 668
  • [10] Semi-supervised feature selection via hierarchical regression for web image classification
    Song, Xiaonan
    Zhang, Jianguang
    Han, Yahong
    Jiang, Jianmin
    MULTIMEDIA SYSTEMS, 2016, 22 (01) : 41 - 49