An application of the effective Sato-Tate conjecture
被引:12
|
作者:
Bucur, Alina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
Bucur, Alina
[1
]
Kedlaya, Kiran S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USAUniv Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
Kedlaya, Kiran S.
[1
]
机构:
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
Based on the Lagarias-Odlyzko effectivization of the Chebotarev density theorem, Kumar Murty gave an effective version of the Sato-Tate conjecture for an elliptic curve conditional on analytic continuation and Riemann hypothesis for the symmetric power L-functions. We use Murty's analysis to give a similar conditional effectivization of the generalized Sato-Tate conjecture for an arbitrary motive. As an application, we give a conditional upper bound of the form O((log N)(2)(log log 2N)(2)) for the smallest prime at which two given rational elliptic curves with conductor at most N have Frobenius traces of opposite sign.