Modeling pre-Exascale AMR Parallel I/O Workloads via Proxy Applications

被引:0
|
作者
Godoy, William F. [1 ]
Delozier, Jenna [2 ]
Watson, Gregory R. [1 ]
机构
[1] Oak Ridge Natl Lab, Comp Sci & Math Div, Oak Ridge, TN 37830 USA
[2] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
关键词
Proxy; I/O; AMR; MACSio; HPC; exascale;
D O I
10.1109/IPDPSW55747.2022.00153
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The present work investigates the modeling of pre-exascale input/output (DO) workloads of Adaptive Mesh Refinement (AMR) simulations through a simple proxy application. We collect data from the AMReX Castro framework running on the Summit supercomputer for a wide range of scales and mesh partitions for the hydrodynamic Sedov case as a baseline to provide sufficient coverage to the formulated proxy model. The non-linear analysis data production rates are quantified as a function of a set of input parameters such as output frequency, grid size, number of levels, and the Courant-Friedrichs-Lewy (CFL) condition number for each rank, mesh level and simulation time step. Linear regression is then applied to formulate a simple analytical model which allows to translate AMReX inputs into MACSio proxy I/O application parameters, resulting in a simple "kernel" approximation for data production at each time step. Results show that MACSio can simulate actual AMReX nonlinear "static" I/O workloads to a certain degree of confidence on the Summit supercomputer using the present methodology. The goal is to provide an initial level of understanding of AMR I/O workloads via lightweight proxy applications models to facilitate autotune data management strategies in anticipation of exascale systems.
引用
收藏
页码:952 / 961
页数:10
相关论文
共 50 条
  • [1] Massively Parallel EEG Algorithms for Pre-exascale Architectures
    Wang, Zeyu
    Juhasz, Zoltan
    EURO-PAR 2023: PARALLEL PROCESSING WORKSHOPS, PT II, EURO-PAR 2023, 2024, 14352 : 290 - 295
  • [2] Cori: A Pre-Exascale Supercomputer for Big Data and HPC Applications
    Wright, Nicholas J.
    Dosanjh, Sudip S.
    Andrews, Allison K.
    Antypas, Katerina B.
    Draney, Brent
    Canon, R. Shane
    Cholia, Shreyas
    Daley, Christopher S.
    Fagnan, Kirsten M.
    Gerber, Richard A.
    Gerhardt, Lisa
    Pezzaglia, Larry
    Prabhat
    Schafer, Karen H.
    Srinivasan, Jay
    BIG DATA AND HIGH PERFORMANCE COMPUTING, 2015, 26 : 82 - 100
  • [3] Replicating HPC I/O Workloads With Proxy Applications
    Dickson, James
    Wright, Steven
    Maheswaran, Satheesh
    Herdman, Andy
    Miller, Mark C.
    Jarvis, Stephen
    PROCEEDINGS OF PDSW-DISCS 2016 - 1ST JOINT INTERNATIONAL WORKSHOP ON PARALLEL DATA STORAGE AND DATA INTENSIVE SCALABLE COMPUTING SYSTEMS, 2016, : 13 - 18
  • [4] HDF5 in the exascale era: Delivering efficient and scalable parallel I/O for exascale applications
    Scot Breitenfeld, M.
    Tang, Houjun
    Zheng, Huihuo
    Henderson, Jordan
    Byna, Suren
    International Journal of High Performance Computing Applications, 2025, 39 (01): : 65 - 78
  • [5] A Novel Model for Synthesizing Parallel I/O Workloads in Scientific Applications
    Feng, Dan
    Zou, Qiang
    Jiang, Hong
    Zhu, Yifeng
    2008 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2008, : 252 - 261
  • [6] <monospace>h5bench</monospace>: A unified benchmark suite for evaluating HDF5 I/O performance on pre-exascale platforms
    Bez, Jean Luca
    Tang, Houjun
    Breitenfeld, Scot
    Zheng, Huihuo
    Liao, Wei-Keng
    Hou, Kaiyuan
    Huang, Zanhua
    Byna, Suren
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (16):
  • [7] A Study of Self-similarity in Parallel I/O Workloads
    Zou, Qiang
    Zhu, Yifeng
    Feng, Dan
    2010 IEEE 26TH SYMPOSIUM ON MASS STORAGE SYSTEMS AND TECHNOLOGIES (MSST), 2010,
  • [8] Evaluating Memory Energy Efficiency in Parallel I/O Workloads
    Yue, Jianhui
    Zhu, Yifeng
    Cai, Zhao
    2007 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2007, : 21 - 30
  • [9] Efficient I/O of grid hierarchies for AMR computations on parallel disks
    Kuo, S
    Winslett, M
    Chen, Y
    Cho, Y
    TENTH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT - PROCEEDINGS, 1998, : 12 - 21
  • [10] Parallel I/O Evaluation Techniques and Emerging HPC Workloads: A Perspective
    Neuwirth, Sarah
    Paul, Arnab K.
    2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021), 2021, : 671 - 679