Parameterization of A Priori Geological Knowledge in Seismic Inversion

被引:0
|
作者
Epov, K. A. [1 ]
机构
[1] Ruspetro LTD, Moscow 125167, Russia
关键词
seismic inversion; depositional environments; facies; conditional probability; a priori knowledge; Bayes' theorem; FACIES MODELS; CLASSIFICATION; UNCERTAINTY; INFORMATION; PREDICTION; ANCIENT; IMPACT;
D O I
10.1134/S1069351319050057
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An approach to parameterization of prior geological knowledge concerning the changes in depositional environment in space and geological time for their quantitative use in the workflow of seismic inversion is presented. The idea is to describe the observed or expected facies diversity in terms of a few statistically independent factors (generalized geological variables). The topology and metrics of the model are determined by the set of basic depositional environments and the statistics of facies transitions. The introduced parameters make it possible to estimate the occurrence probability of different facies at each model point. The proposed technique can be applied for regions with various degree of detail of the existing geological knowledge and amount of available well logging data.
引用
收藏
页码:907 / 926
页数:20
相关论文
共 50 条
  • [1] Parameterization of A Priori Geological Knowledge in Seismic Inversion
    K. A. Epov
    [J]. Izvestiya, Physics of the Solid Earth, 2019, 55 : 907 - 926
  • [2] Regularizing method with a priori knowledge for seismic impedance inversion
    Cui Yan
    Wang Yan-Fei
    Yang Chang-Chun
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (08): : 2135 - 2141
  • [3] Seismic results as a-priori knowledge for airborne TEM data inversion - A case study
    Burschil, Thomas
    Wiederhold, Helga
    Auken, Esben
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2012, 80 : 121 - 128
  • [4] Inversion of geological knowledge for fold geometry
    Grose, Lachlan
    Ailleres, Laurent
    Laurent, Gautier
    Armit, Robin
    Jessell, Mark
    [J]. JOURNAL OF STRUCTURAL GEOLOGY, 2019, 119 : 1 - 14
  • [5] The impact of a priori elastic models into iterative geostatistical seismic inversion
    Pereira, Pedro
    Azevedo, Leonardo
    Nunes, Ruben
    Soares, Amilcar
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2019, 170
  • [6] On utilization of a priori knowledge in inversion of remote sensing models
    Li, XW
    Wang, JD
    Hu, BX
    Strahler, AH
    [J]. SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 1998, 41 (06): : 580 - 585
  • [7] On utilization of a priori knowledge in inversion of remote sensing models
    李小文
    王锦地
    胡宝新
    AlanH.Strahler
    [J]. Science China Earth Sciences, 1998, (06) : 580 - 585
  • [8] On utilization ofa priori knowledge in inversion of remote sensing models
    Xiaowen Li
    Jindi Wang
    Baoxin Hu
    Alan H. Strahler
    [J]. Science in China Series D: Earth Sciences, 1998, 41 : 580 - 585
  • [9] Robust deep learning seismic inversion with a priori initial model constraint
    Zhang, Jian
    Li, Jingye
    Chen, Xiaohong
    Li, Yuanqiang
    Huang, Guangtan
    Chen, Yangkang
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2021, 225 (03) : 2001 - 2019
  • [10] 3-D Seismic Inversion by Model Parameterization With Fourier Coefficients
    Gao, Fengxia
    Rao, Ying
    Zhu, Tong
    Wang, Yanghua
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61