A comparative study of signal processing methods for structural health monitoring

被引:27
|
作者
Qarib, Hossein [1 ,2 ,3 ]
Adeli, Hojjat [1 ,2 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Ohio State Univ, Dept Civil, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[2] Ohio State Univ, Dept Environm, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[3] Ohio State Univ, Dept Geodet Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[4] Ohio State Univ, Dept Elect & Comp Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[5] Ohio State Univ, Dept Biomed Engn, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[6] Ohio State Univ, Dept Biomed Informat, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
[7] Ohio State Univ, Dept Neurosci, 470 Hitchcock Hall,2070 Neil Ave, Columbus, OH 43220 USA
关键词
parametric and nonparametric signal processing; frequency analysis; feature extraction; structural health monitoring; matrix pencil method; Prony method; performance comparison; NEURAL-NETWORK MODEL; MATRIX PENCIL METHOD; WAVELET; SYSTEM; IDENTIFICATION; PARAMETERS; DOMAIN; FLOW; DECOMPOSITION; DELAY;
D O I
10.21595/jve.2016.17218
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper four non-parametric and five parametric signal processing techniques are reviewed and their performances are compared through application to a sample exponentially damped synthetic signal with closely-spaced frequencies representing the ambient response of structures. The non-parametric methods are Fourier transform, periodogram estimate of power spectral density, wavelet transform, and empirical mode decomposition with Hilbert spectral analysis (Hilbert-Huang transform). The parametric methods are pseudospectrum estimate using the multiple signal categorization (MUSIC), empirical wavelet transform, approximate Prony method, matrix pencil method, and the estimation of signal parameters by rotational invariance technique (ESPRIT) method. The performances of different methods are studied statistically using the Monte Carlo simulation and the results are presented in terms of average errors of multiple sample analyses.
引用
收藏
页码:2186 / 2204
页数:19
相关论文
共 50 条
  • [1] The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review
    D. Goyal
    B. S. Pabla
    [J]. Archives of Computational Methods in Engineering, 2016, 23 : 585 - 594
  • [2] The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review
    Goyal, D.
    Pabla, B. S.
    [J]. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2016, 23 (04) : 585 - 594
  • [3] A Comparative Study of Signal Processing Methods for Contactless Geodetic Monitoring
    Lubej, Samo
    Bostjan, Kovacic
    [J]. APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [4] Ultrasonic signal processing for structural health monitoring
    Michaels, JE
    Michaels, TE
    [J]. REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 23A AND 23B, 2004, 23 : 1476 - 1483
  • [5] Signal processing issues related to structural health monitoring
    DeSimo, Martin P.
    Olson, Steven E.
    de Oca, Jose A. Montes
    Derriso, Mark M.
    [J]. CONFERENCE RECORD OF THE FORTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1-5, 2007, : 843 - +
  • [6] A comparative study of the stochastic simulation methods applied in structural health monitoring
    Zhang, Yanhui
    Yang, Wenyu
    [J]. ENGINEERING COMPUTATIONS, 2014, 31 (07) : 1484 - 1513
  • [7] Signal Processing Techniques for IoT-based Structural Health Monitoring
    Mahmud, Md Anam
    Abdelgawad, Ahmed
    Yelamarthi, Kumar
    Ismail, Yasser A.
    [J]. 2017 29TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2017, : 137 - 141
  • [8] Computationally Efficient Structural Health Monitoring Using Graph Signal Processing
    Cheema, Muhammad Asaad
    Sarwar, Muhammad Zohaib
    Gogineni, Vinay Chakravarthi
    Cantero, Daniel
    Rossi, Pierluigi Salvo
    [J]. IEEE SENSORS JOURNAL, 2024, 24 (07) : 11895 - 11905
  • [9] An Efficient Signal Processing Tool for Impedance-based Structural Health Monitoring
    O'Brien, Megan K.
    Taylor, Stuart G.
    Farinholt, Kevin M.
    Park, Gyuhae
    Farrar, Charles R.
    [J]. HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2009, 2009, 7295
  • [10] Application of signal processing techniques in structural health monitoring of concrete gravity dams
    Esmaielzadeh S.
    Mahmoodi M.J.
    Abad M.J.S.
    [J]. Asian Journal of Civil Engineering, 2023, 24 (7) : 2049 - 2063