Microstructure and magnetic properties of Ni50Mn37Sn13 Heusler alloy ribbons

被引:93
|
作者
Santos, J. D. [1 ]
Sanchez, T. [1 ]
Alvarez, P. [1 ]
Sanchez, M. L. [1 ]
Llamazares, J. L. Sanchez [1 ]
Hernando, B. [1 ]
Escoda, Ll. [2 ]
Sunol, J. J. [2 ]
Varga, R. [3 ]
机构
[1] Univ Oviedo, Dept Fis, Fac Ciencias, E-33007 Oviedo, Spain
[2] Univ Girona, Girona 17003, Spain
[3] UPJS, Inst Phys, Fac Sci, Kosice, Slovakia
关键词
All Open Access; Green;
D O I
10.1063/1.2832330
中图分类号
O59 [应用物理学];
学科分类号
摘要
The Heusler alloy Ni50Mn37Sn13 was successfully produced as ribbon flakes of thickness around 7-10 mu m melt spinning. Fracture cross section micrographs in the ribbon show the formation of a microcrystalline columnarlike microstructure, with their longer axes perpendicular to the ribbon plane. Phase transition temperatures of the martensite-austenite transformation were found to be M-S=218 K, M-f=207 K, A(S)=224 K, and A(f)=232 K; the thermal hysteresis of the transformation is 15 K. Ferromagnetic L2(1) bcc austenite phase shows a Curie point of 313 K, with cell parameter a=0.5971(5) nm at 298 K, transforming into a modulated 7M orthorhombic martensite with a=0.6121(7) nm, b=0.6058(8) nm, and c=0.5660(2) nm, at 150 K. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Martensitic Transformation and Magnetic Transport Properties in Ni50Mn37Sn13 Alloy
    Kaletina, Yu. V.
    Gerasimov, E. G.
    Terentev, P. B.
    Kaletin, A. Yu.
    PHYSICS OF METALS AND METALLOGRAPHY, 2020, 121 (09): : 894 - 898
  • [2] Martensitic Transformation and Magnetic Transport Properties in Ni50Mn37Sn13 Alloy
    Yu. V. Kaletina
    E. G. Gerasimov
    P. B. Terentev
    A. Yu. Kaletin
    Physics of Metals and Metallography, 2020, 121 : 894 - 898
  • [3] Structure and exchange bias of Ni50Mn37Sn13 ribbons
    Yang, Y. B.
    Ma, X. B.
    Chen, X. G.
    Wei, J. Z.
    Wu, R.
    Han, J. Z.
    Du, H. L.
    Wang, C. S.
    Liu, S. Q.
    Yang, Y. C.
    Zhang, Y.
    Yang, J. B.
    JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)
  • [4] Atomic ordering effect in Ni50Mn37Sn13 magnetocaloric ribbons
    Wu, Dianzhen
    Xue, Sichuang
    Frenzel, Jan
    Eggeler, Gunther
    Zhai, Qijie
    Zheng, Hongxing
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 534 : 568 - 572
  • [5] Magnetic field dependence of electrical resistivity and thermopower in Ni50Mn37Sn13 ribbons
    Repaka, D. V. Maheswar
    Chen, X.
    Ramanujan, R. V.
    Mahendiran, R.
    AIP ADVANCES, 2015, 5 (09)
  • [6] Influence of cobalt on phase transitions in Ni50Mn37Sn13
    Khovaylo, V.
    Koledov, V.
    Shavrov, V.
    Ohtsuka, M.
    Miki, H.
    Takagi, T.
    Novosad, V.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 481 (322-325): : 322 - 325
  • [7] Room temperature inverse magnetocaloric effect in Pd substituted Ni50Mn37Sn13 Heusler alloys
    Saha, Ritwik
    Nigam, A. K.
    PHYSICA B-CONDENSED MATTER, 2014, 448 : 263 - 266
  • [8] Magnetocaloric and critical behavior in the austenitic phase of Gd-doped Ni50Mn37Sn13 Heusler alloys
    Zhang, P.
    Phan, T. L.
    Dan, N. H.
    Thanh, T. D.
    Yu, S. C.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 : S335 - S339
  • [9] Effect of quenching rate on the average grain size and martensitic transformation temperature in rapidly solidified polycrystalline Ni50Mn37Sn13 alloy ribbons
    Quintana-Nedelcos, A.
    Sanchez Llamazares, J. L.
    Rios-Jara, D.
    Lara-Rodriguez, A. G.
    Garcia-Fernandez, T.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2013, 210 (10): : 2159 - 2165
  • [10] Surface topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni-Mn-Sn Heusler alloy ribbons
    Czaja, P.
    Maziarz, W.
    Przewoznik, J.
    Zywczak, A.
    Ozga, P.
    Bramowicz, M.
    Kulesza, S.
    Dutkiewicz, J.
    INTERMETALLICS, 2014, 55 : 1 - 8