Computing zeta functions on log smooth models

被引:2
|
作者
Bultot, Emmanuel [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
基金
比利时弗兰德研究基金会;
关键词
ARC SPACES;
D O I
10.1016/j.crma.2014.11.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a formula for the volume Poincare series of a log smooth scheme. This yields in particular a new expression and a smaller set of candidate poles for the motivic zeta function of a hypersurface singularity and of a degeneration of Calabi-Yau varieties. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 50 条
  • [1] Computing motivic zeta functions on log smooth models
    Bultot, Emmanuel
    Nicaise, Johannes
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (1-2) : 427 - 462
  • [2] Computing motivic zeta functions on log smooth models
    Emmanuel Bultot
    Johannes Nicaise
    Mathematische Zeitschrift, 2020, 295 : 427 - 462
  • [3] Zeta functions for curves and log canonical models
    Veys, W
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 74 : 360 - 378
  • [4] Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Models
    Delarue, Benjamin
    Schuette, Philipp
    Weich, Tobias
    ANNALES HENRI POINCARE, 2024, 25 (02): : 1607 - 1656
  • [5] Resonances and Weighted Zeta Functions for Obstacle Scattering via Smooth Models
    Benjamin Delarue
    Philipp Schütte
    Tobias Weich
    Annales Henri Poincaré, 2024, 25 : 1607 - 1656
  • [6] ZETA FUNCTIONS AND THE LOG BEHAVIOUR OF COMBINATORIAL SEQUENCES
    Chen, William Y. C.
    Guo, Jeremy J. F.
    Wang, Larry X. W.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2015, 58 (03) : 637 - 651
  • [7] Computing zeta functions of nondegenerate curves
    Castryck, W.
    Denef, J.
    Vercauteren, F.
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2006,
  • [8] Computing zeta functions of arithmetic schemes
    Harvey, David
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2015, 111 : 1379 - 1401
  • [9] Rational series for multiple zeta and log gamma functions
    Young, Paul Thomas
    JOURNAL OF NUMBER THEORY, 2013, 133 (12) : 3995 - 4009
  • [10] Computing special values of partial zeta functions
    Chinta, G
    Gunnells, PE
    Sczech, R
    ALGORITHMIC NUMBER THEORY, 2000, 1838 : 247 - 256