Olefination of Alkyl Halides with Aldehydes by Merging Visible-Light Photoredox Catalysis and Organophosphorus Chemistry

被引:12
|
作者
Jiang, Min [1 ]
Yang, Haijun [1 ]
Lefebvre, Quentin [2 ]
Su, Jihu [3 ]
Fu, Hua [1 ]
机构
[1] Tsinghua Univ, Dept Chem, Minist Educ, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
[2] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[3] Univ Sci & Technol China, Dept Modern Phys, CAS Key Lab Microscale Magnet Resonance, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
DECARBOXYLATIVE COUPLINGS; STEREOSELECTIVE-SYNTHESIS; METATHESIS CATALYSTS; RADICAL-ADDITION; INTERNAL ALKYNES; TERMINAL ALKYNES; SINGLE-LAYER; EFFICIENT; ARYL; FLUORINE;
D O I
10.1016/j.isci.2018.07.011
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Carbon-carbon double bond (C=C) formation is a crucial transformation in organic chemistry. Visiblelight photoredox catalysis provides economical and sustainable opportunities for the development of novel and peculiar organic reactions. Here we report a method for the olefination of alkyl halides with aldehydes by visible-light photoredox catalysis using triphenylphosphine as a reductive quencher (103 examples). This transformation accommodates a variety of aldehydes including paraformaldehyde; aqueous formaldehyde; 2,2,2-trifluoroacetaldehyde monohydrate; 2,2,2-trifluoro-1-methoxyethanol; and other common aldehydes. The present method exhibits several advantages, including operational simplicity, mild reaction conditions, wide functional group tolerance, and amenability to gram-scale synthesis. We anticipate that it will be widely used in the synthesis of organic molecules, natural products, biological molecules, and polymers.
引用
收藏
页码:102 / +
页数:190
相关论文
共 50 条
  • [1] Visible-Light Photoredox Catalysis
    Xuan, Jun
    Xiao, Wen-Jing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (28) : 6828 - 6838
  • [2] Acyl Radical Chemistry via Visible-Light Photoredox Catalysis
    Banerjee, Arghya
    Lei, Zhen
    Ngai, Ming-Yu
    SYNTHESIS-STUTTGART, 2019, 51 (02): : 303 - 333
  • [3] Visible-Light Photoredox Catalysis in Water
    Russo, Camilla
    Brunelli, Francesca
    Tron, Gian Cesare
    Giustiniano, Mariateresa
    JOURNAL OF ORGANIC CHEMISTRY, 2023, 88 (10): : 6284 - 6293
  • [4] Visible-Light Photoredox Catalysis in Flow
    Tucker, Joseph W.
    Zhang, Yuan
    Jamison, Timothy F.
    Stephenson, Corey R. J.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (17) : 4144 - 4147
  • [5] Homogeneous Visible-Light Photoredox Catalysis
    Zou, You-Quan
    Chen, Jia-Rong
    Xiao, Wen-Jing
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (45) : 11701 - 11703
  • [6] Merging Visible Light Photoredox and Gold Catalysis
    Hopkinson, Matthew N.
    Tlahuext-Aca, Adrian
    Glorius, Frank
    ACCOUNTS OF CHEMICAL RESEARCH, 2016, 49 (10) : 2261 - 2272
  • [7] Acceptorless Dehydrogenation of N-Heterocycles by Merging Visible-Light Photoredox Catalysis and Cobalt Catalysis
    He, Ke-Han
    Tan, Fang-Fang
    Zhou, Chao-Zheng
    Zhou, Gui-Jiang
    Yang, Xiao-Long
    Li, Yang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (11) : 3080 - 3084
  • [8] A Desulfurative Strategy for the Generation of Alkyl Radicals Enabled by Visible-Light Photoredox Catalysis
    Xue, Fei
    Wang, Falu
    Liu, Jiazhen
    Di, Jiamei
    Liao, Qi
    Lu, Huifang
    Zhu, Min
    He, Liping
    He, Huan
    Zhang, Dan
    Song, Hao
    Liu, Xiao-Yu
    Qin, Yong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (22) : 6667 - 6671
  • [9] Merging visible-light photoredox and copper catalysis in catalytic aerobic oxidation of amines to nitriles
    Tao, Chuanzhou
    Wang, Bin
    Sun, Lei
    Liu, Zhou
    Zhai, Yadong
    Zhang, Xiulian
    Wang, Jian
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (02) : 328 - 332
  • [10] Merging visible-light photoredox and micellar catalysis: arylation reactions with anilines nitrosated in situ
    Bu, Mei-jie
    Lu, Guo-ping
    Jiang, Jianzhong
    Cai, Chun
    CATALYSIS SCIENCE & TECHNOLOGY, 2018, 8 (15) : 3728 - 3732