A note on the number of solutions of the Pillai type equation |ax - by|= k

被引:0
|
作者
Fujita, Yasutsugu [1 ]
Le, Maohua [2 ]
机构
[1] Nihon Univ, Dept Math, Coll Ind Technol, 2-11-1 Shin Ei, Narashino, Chiba, Japan
[2] Lingnan Normal Coll, Inst Math, Zhanjiang 524048, Guangdong, Peoples R China
关键词
Purely exponential Diophantine equation; Pillai type equation; Upper bound for number of solutions; Application of Baker's method;
D O I
10.1016/j.jnt.2021.12.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a, b, k be fixed positive integers such that min{a, b} > 1and gcd(a, b) = 1, and let N '( a, b, k) denote the number of positive integer solutions (x, y) of the equation |a(x)- b(y)|= k. In this paper, using a lower bound of linear forms in two logarithms combined with some properties of convergents of irrational numbers, we prove the following two results: (i) If min{a, b} >= 85988, then N '(a, b, k) <= 2. (ii) For any real number epsilon with 0 < epsilon < 1, if k< min{a(1-epsilon), b(1-epsilon)} and max{a, b} > C(epsilon), where C(epsilon) is an effectively computable constant depending only on epsilon, then N '(a, b, k) <= 1. In particular, if k < min {a(1/15), b(1/15)}, then N '(a, b, k) <= 1except for N '(2, 3, 1) = N '(3, 2, 1) = 3. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:40 / 56
页数:17
相关论文
共 50 条