Dynamical Rushbrooke's inequality for nonequilibrium relaxation process

被引:2
|
作者
Ozeki, Y
Ito, N
机构
[1] Tokyo Inst Technol, Dept Phys, Meguro Ku, Tokyo 1528551, Japan
[2] Univ Tokyo, Dept Appl Phys, Bunkyo Ku, Tokyo 1138656, Japan
来源
关键词
D O I
10.1088/0305-4470/36/19/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An inequality for dynamic critical exponents is proved for relaxation processes of arbitrary. magnetic systems. This is a dynamical extension of Rushbrooke's inequality. It can be applied to any continuous-transition systems with various dynamics. The relation is demonstrated on the result of nonequilibrium relaxation analysis. of fluctuations applied to the three-dimensional ferromagnetic Ising model.
引用
收藏
页码:5175 / 5179
页数:5
相关论文
共 50 条
  • [1] Nonequilibrium Relaxation Inequality on Short Timescales
    Auconi, Andrea
    PHYSICAL REVIEW LETTERS, 2025, 134 (08)
  • [2] Entropy, specific heat, susceptibility, and Rushbrooke inequality in percolation
    Hassan, M. K.
    Alam, D.
    Jitu, Z. I.
    Rahman, M. M.
    PHYSICAL REVIEW E, 2017, 96 (05)
  • [3] Finite-Time Dynamical Phase Transition in Nonequilibrium Relaxation
    Meibohm, Jan
    Esposito, Massimiliano
    PHYSICAL REVIEW LETTERS, 2022, 128 (11)
  • [4] Product-sum universality and Rushbrooke inequality in explosive percolation
    Sabbir, M. M. H.
    Hassan, M. K.
    PHYSICAL REVIEW E, 2018, 97 (05):
  • [5] Improved dynamical scaling analysis using the kernel method for nonequilibrium relaxation
    Echinaka, Yuki
    Ozeki, Yukiyasu
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [6] Nonequilibrium dynamical transition process between excited states of holographic superconductors
    Ran Li
    Jin Wang
    Yong-Qiang Wang
    Hongbao Zhang
    Journal of High Energy Physics, 2020
  • [7] Nonequilibrium dynamical transition process between excited states of holographic superconductors
    Li, Ran
    Wang, Jin
    Wang, Yong-Qiang
    Zhang, Hongbao
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (11)
  • [8] Nonequilibrium relaxation method
    Ozeki, Yukiyasu
    Ito, Nobuyasu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (31) : R149 - R203
  • [9] CONSEQUENCES OF AN INEQUALITY IN NONEQUILIBRIUM THERMODYNAMICS
    MEIXNER, J
    JOURNAL OF APPLIED MECHANICS, 1966, 33 (03): : 481 - &
  • [10] Energy and Temperature Relaxation described by Nonequilibrium Green's Functions
    Vorberger, J.
    Gericke, D. O.
    Bornath, Th.
    Schlanges, M.
    PROGRESS IN NONEQUILIBRIUM GREEN'S FUNCTIONS IV, 2010, 220