Data-Informed Parameter Synthesis for Population Markov Chains

被引:4
|
作者
Hajnal, Matej [2 ,4 ]
Nouvian, Morgane [1 ,3 ]
Safranek, David [4 ]
Petrov, Tatjana [2 ,3 ]
机构
[1] Univ Konstanz, Dept Biol, Constance, Germany
[2] Univ Konstanz, Dept Comp & Informat Sci, Constance, Germany
[3] Univ Konstanz, Ctr Adv Study Collect Behav, D-78464 Constance, Germany
[4] Masaryk Univ, Syst Biol Lab, Fac Informat, Bot 68a, Brno 60200, Czech Republic
来源
关键词
GENERALIZED-METHOD; MODELS; BEHAVIOR; MOMENTS;
D O I
10.1007/978-3-030-28042-0_10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stochastic population models are widely used to model phenomena in different areas such as chemical kinetics or collective animal behaviour. Quantitative analysis of stochastic population models easily becomes challenging, due to the combinatorial propagation of dependencies across the population. The complexity becomes especially prominent when model's parameters are not known and available measurements are limited. In this paper, we illustrate this challenge in a concrete scenario: we assume a simple communication scheme among identical individuals, inspired by how social honeybees emit the alarm pheromone to protect the colony in case of danger. Together, n individuals induce a population Markov chain with n parameters. In addition, we assume to be able to experimentally observe the states only after the steady-state is reached. In order to obtain the parameters of the individual's behaviour, by utilising the data measurements for population, we combine two existing techniques. First, we use the tools for parameter synthesis for Markov chains with respect to temporal logic properties, and then we employ CEGAR-like reasoning to find the viable parameter space up to desired coverage. We report the performance on a number of synthetic data sets.
引用
收藏
页码:147 / 164
页数:18
相关论文
共 50 条
  • [1] Data-Informed Parameter Synthesis for Population Markov Chains
    Hajnal, Matej
    Nouvian, Morgane
    Petrov, Tatjana
    Safranek, David
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY (CMSB 2019), 2019, 11773 : 383 - 386
  • [2] DiPS: A Tool for Data-Informed Parameter Synthesis for Markov Chains from Multiple-Property Specifications
    Hajnal, Matej
    Safranek, David
    Petrov, Tatjana
    PERFORMANCE ENGINEERING AND STOCHASTIC MODELING, 2021, 13104 : 79 - 95
  • [3] Data-informed knowledge and strategies
    Jiang, Junli
    Naumov, Pavel
    ARTIFICIAL INTELLIGENCE, 2022, 309
  • [4] Data-informed deep optimization
    Zhang, Lulu
    Xu, Zhi-Qin John
    Zhang, Yaoyu
    PLOS ONE, 2022, 17 (06):
  • [5] Data-informed language learning
    Godwin-Jones, Robert
    LANGUAGE LEARNING & TECHNOLOGY, 2017, 21 (03): : 9 - 27
  • [6] Data-informed influence analysis
    Critchley, F
    Marriott, P
    BIOMETRIKA, 2004, 91 (01) : 125 - 140
  • [7] A data-informed mean-field approach to mapping of cortical parameter landscapes
    Xiao, Zhuo-Cheng
    Lin, Kevin K.
    Young, Lai-Sang
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (12)
  • [8] Parameter Synthesis for Parametric Interval Markov Chains
    Delahaye, Benoit
    Lime, Didier
    Petrucci, Laure
    VERIFICATION, MODEL CHECKING, AND ABSTRACT INTERPRETATION, VMCAI 2016, 2016, 9583 : 372 - 390
  • [9] Feedback in Scrum: Data-Informed Retrospectives
    Matthies, Christoph
    2019 IEEE/ACM 41ST INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2019), 2019, : 198 - 201
  • [10] Data-Informed Geometric Space Selection
    Zhang, Shuai
    Jiang, Wenqi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,