ON STRONGLY PRIME SUBMODULES

被引:1
|
作者
Azizi, Abdulrasool [1 ]
机构
[1] Shiraz Univ, Coll Sci, Dept Math, Shiraz 7145744776, Iran
关键词
I-maximal submodule; prime submodule; strongly prime submodule; strongly semiprime submodule; RADICAL FORMULA; MODULES;
D O I
10.18514/MMN.2018.1670
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a commutative ring with identity and M an R-module. A proper submodule N of M is called strongly prime [resp. strongly semiprime], if ((N + Rx): M)y & SURE; N [resp. ((N + Rx): M)x subset of N] for x,y is an element of M implies that x is an element of N or y is an element of N [resp. x is an element of N]. Strongly prime and strongly semiprime submodules are studied, in this paper.
引用
收藏
页码:125 / 139
页数:15
相关论文
共 50 条
  • [1] On Φ-powerful submodules and Φ-strongly prime submodules
    Khan, Waheed Ahmad
    Farid, Kiran
    Taouti, Abdelghani
    AIMS MATHEMATICS, 2021, 6 (10): : 11610 - 11619
  • [2] STRONGLY PRIME SUBMODULES
    Naghipour, A. R.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (07) : 2193 - 2199
  • [3] STRONGLY PRIME SUBMODULES, G-SUBMODULES AND JACOBSON MODULES
    Rush, David E.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) : 1363 - 1368
  • [4] Strongly prime submodules and strongly 0-dimensional modules
    Bilgin, Zehra
    Koc, Suat
    Ozkirisci, Neslihan Aysen
    ALGEBRA AND DISCRETE MATHEMATICS, 2019, 28 (02): : 171 - 183
  • [5] A GENERALIZATION OF PRIMARY IDEALS AND STRONGLY PRIME SUBMODULES
    Jafari, Afroozeh
    Baziar, Mohammad
    Safaeeyan, Saeed
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (02): : 423 - 432
  • [6] Some remarks on S-strongly prime submodules
    Farzalipour, F.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (01): : 190 - 205
  • [7] STRONGLY PRIME SUBMODULES AND PSEUDO-VALUATION MODULES
    Moghaderi, J.
    Nekooei, R.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2011, 10 : 65 - 75
  • [8] Weakly prime submodules and prime submodules
    Azizi, A.
    GLASGOW MATHEMATICAL JOURNAL, 2006, 48 : 343 - 346
  • [9] Characteristic submodules of injective modules over strongly prime rings
    Tuganbaev, Askar A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2014, 24 (04): : 253 - 256
  • [10] Strongly Prime Submodules (vol 37, pg 2193, 2009)
    Naghipour, A. R.
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (09) : 4148 - 4148