DELAY-DEPENDENT ELLIPTIC RECONSTRUCTION AND OPTIMAL L∞(L2) A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE DELAY PARABOLIC PROBLEMS

被引:4
|
作者
Wang, Wansheng [1 ]
Yi, Lijun [1 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
DIFFUSION MATHEMATICAL-MODELS; CRANK-NICOLSON METHOD; RUNGE-KUTTA METHODS; DIFFERENTIAL EQUATIONS; NONLINEAR STABILITY; NUMERICAL-SOLUTION; CONVERGENCE; APPROXIMATION; INTEGRATION; BEHAVIOR;
D O I
10.1090/mcom/3761
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive optimal order a posteriori error estimates for fully discrete approximations of linear parabolic delay differential equations (PDDEs), in the L infinity( L-2)-norm. For the discretization in time we use Backward Euler and Crank-Nicolson methods, while for the space discretization we use standard conforming finite element methods. A novel space-time reconstruction operator is introduced, which is a generalization of the elliptic reconstruction operator, and we call it as delay-dependent elliptic reconstruction operator. The related a posteriori error estimates for the delay-dependent elliptic reconstruction play key roles in deriving optimal order a posteriori error estimates in the L infinity(L-2)- norm. Numerical experiments verify and complement our theoretical results.
引用
收藏
页码:2609 / 2643
页数:35
相关论文
共 50 条