Random cluster covering model

被引:13
|
作者
Gummelt, P [1 ]
机构
[1] Ernst Moritz Arndt Univ Greifswald, Inst Math & Informat, D-17487 Greifswald, Germany
关键词
D O I
10.1016/j.jnoncrysol.2003.11.014
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The unit-cluster approach describing quasicrystalline structures by a single unit with possible 'fat' overlaps has mainly been worked out for the ideal case of perfect order. A general concept for corresponding random covering ensembles is still missing. As a natural framework, we introduce an 'overlap-version' of the well-known random tiling model in terms of relaxed cluster matching rules. We illustrate our method by a relaxed decagon determining a covering ensemble with positive configurational entropy. We characterize this coverings using equivalent underlying Penrose-type tilings, which form Hexagon-Boat-Star (HBS)-supertilings. Given an HBS-supertiling, we describe the effect of so-called bow-tie flips on corresponding decagon coverings. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 67
页数:6
相关论文
共 50 条
  • [1] Machine Covering in the Random-Order Model
    Albers, Susanne
    Galvez, Waldo
    Janke, Maximilian
    [J]. ALGORITHMICA, 2023, 85 (06) : 1560 - 1585
  • [2] Machine Covering in the Random-Order Model
    Susanne Albers
    Waldo Gálvez
    Maximilian Janke
    [J]. Algorithmica, 2023, 85 : 1560 - 1585
  • [3] RANDOM-CLUSTER MODEL .3. SIMPLE RANDOM-CLUSTER MODEL
    FORTUIN, CM
    [J]. PHYSICA, 1972, 59 (04): : 545 - &
  • [4] Cluster detection with random neighbourhood covering: Application to invasive Group A Streptococcal disease
    Cavallaro, Massimo
    Coelho, Juliana
    Ready, Derren
    Decraene, Valerie
    Lamagni, Theresa
    McCarthy, Noel D.
    Todkill, Dan
    Keeling, Matt J.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (11)
  • [5] A RANDOM COVERING INTERPRETATION FOR THE PHASE-TRANSITION OF THE RANDOM ENERGY-MODEL
    KOUKIOU, F
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1990, 60 (5-6) : 669 - 674
  • [6] Random Cluster Model on Regular Graphs
    Bencs, Ferenc
    Borbenyi, Marton
    Csikvari, Peter
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (01) : 203 - 248
  • [7] Random Cluster Model on Regular Graphs
    Ferenc Bencs
    Márton Borbényi
    Péter Csikvári
    [J]. Communications in Mathematical Physics, 2023, 399 : 203 - 248
  • [8] Bridges in the random-cluster model
    Elci, Eren Metin
    Weigel, Martin
    Fytas, Nikolaos G.
    [J]. NUCLEAR PHYSICS B, 2016, 903 : 19 - 50
  • [9] RANDOM CLUSTER MODEL ON A CAYLEY TREE
    BAUMGARTEL, HG
    MULLERHARTMANN, E
    [J]. ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 46 (03): : 227 - 235
  • [10] Damage spreading in the random cluster model
    Lundow, P. H.
    [J]. NUCLEAR PHYSICS B, 2022, 985