Test on Stochastic Block Model: Local Smoothing and Extreme Value Theory

被引:2
|
作者
Wu Fan [1 ]
Kong Xinbing [2 ]
Xu Chao [3 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 211819, Peoples R China
[2] Nanjing Audit Univ, Sch Stat & Math, Nanjing 211815, Peoples R China
[3] Nanjing Audit Univ, Sch Informat Engn, Nanjing 211815, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme value distribution; network data; stochastic block model;
D O I
10.1007/s11424-021-0154-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, to obtain a consistent estimator of the number of communities, the authors present a new sequential testing procedure, based on the locally smoothed adjacency matrix and the extreme value theory. Under the null hypothesis, the test statistic converges to the type I extreme value distribution, and otherwise, it explodes fast and the divergence rate could even reach n in the strong signal case where n is the size of the network, guaranteeing high detection power. This method is simple to use and serves as an alternative approach to the novel one in Lei (2016) using random matrix theory. To detect the change of the community structure, the authors also propose a two-sample test for the stochastic block model with two observed adjacency matrices. Simulation studies justify the theory. The authors apply the proposed method to the political blog data set and find reasonable group structures.
引用
下载
收藏
页码:1535 / 1556
页数:22
相关论文
共 50 条
  • [1] Test on Stochastic Block Model: Local Smoothing and Extreme Value Theory
    WU Fan
    KONG Xinbing
    XU Chao
    Journal of Systems Science & Complexity, 2022, 35 (04) : 1535 - 1556
  • [2] Test on Stochastic Block Model: Local Smoothing and Extreme Value Theory
    Fan Wu
    Xinbing Kong
    Chao Xu
    Journal of Systems Science and Complexity, 2022, 35 : 1535 - 1556
  • [3] Test on Stochastic Block Model: Local Smoothing and Extreme Value Theory
    Wu, Fan
    Kong, Xinbing
    Xu, Chao
    Journal of Systems Science and Complexity, 2022, 35 (04) : 1535 - 1556
  • [4] Extreme value theory for stochastic integrals of Legendre polynomials
    Aue, Alexander
    Horvath, Lajos
    Huskova, Marie
    JOURNAL OF MULTIVARIATE ANALYSIS, 2009, 100 (05) : 1029 - 1043
  • [5] ON DOMAINS OF UNIFORM LOCAL ATTRACTION IN EXTREME VALUE THEORY
    SWEETING, TJ
    ANNALS OF PROBABILITY, 1985, 13 (01): : 196 - 205
  • [6] Specification test for threshold estimation in extreme value theory
    Miranda, Lourenco Couto
    JOURNAL OF OPERATIONAL RISK, 2014, 9 (02): : 23 - 37
  • [7] ON THE BLOCK MAXIMA METHOD IN EXTREME VALUE THEORY: PWM ESTIMATORS
    Ferreira, Ana
    de Haan, Laurens
    ANNALS OF STATISTICS, 2015, 43 (01): : 276 - 298
  • [8] Bad Local Minima Exist in the Stochastic Block Model
    Amin Coja-Oghlan
    Lena Krieg
    Johannes Christian Lawnik
    Olga Scheftelowitsch
    Journal of Statistical Physics, 191 (11)
  • [9] Sampling local properties of attractors via Extreme Value Theory
    Faranda, Davide
    Freitas, Jorge Milhazes
    Guiraud, Pierre
    Vaienti, Sandro
    CHAOS SOLITONS & FRACTALS, 2015, 74 : 55 - 66
  • [10] Independent test assessment using the extreme value distribution theory
    Marcio Almeida
    Lucy Blondell
    Juan M. Peralta
    Jack W. Kent
    Goo Jun
    Tanya M. Teslovich
    Christian Fuchsberger
    Andrew R. Wood
    Alisa K. Manning
    Timothy M. Frayling
    Pablo E. Cingolani
    Robert Sladek
    Thomas D. Dyer
    Goncalo Abecasis
    Ravindranath Duggirala
    John Blangero
    BMC Proceedings, 10 (Suppl 7)