Information Rates of Nonparametric Gaussian Process Methods

被引:0
|
作者
van der Vaart, Aad [1 ]
van Zanten, Harry [2 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
[2] Eindhoven Univ Technol, Dept Math, NL-5600 MB Eindhoven, Netherlands
关键词
Bayesian learning; Gaussian prior; information rate; risk; Matern kernel; squared exponential kernel; INEQUALITIES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the quality of learning a response function by a nonparametric Bayesian approach using a Gaussian process (GP) prior on the response function. We upper bound the quadratic risk of the learning procedure, which in turn is an upper bound on the Kullback-Leibler information between the predictive and true data distribution. The upper bound is expressed in small ball probabilities and concentration measures of the GP prior. We illustrate the computation of the upper bound for the Matern and squared exponential kernels. For these priors the risk, and hence the information criterion, tends to zero for all continuous response functions. However, the rate at which this happens depends on the combination of true response function and Gaussian prior, and is expressible in a certain concentration function. In particular, the results show that for good performance, the regularity of the GP prior should match the regularity of the unknown response function.
引用
收藏
页码:2095 / 2119
页数:25
相关论文
共 50 条
  • [1] Information consistency of nonparametric Gaussian process methods
    Seeger, Matthias W.
    Kakade, Sham M.
    Foster, Dean R.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (05) : 2376 - 2382
  • [2] Gaussian process methods for nonparametric functional regression with mixed predictors
    Wang, Bo
    Xu, Aiping
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 80 - 90
  • [3] Information value in nonparametric Dirichlet-process Gaussian-process (DPGP) mixture models
    Wei, Hongchuan
    Lu, Wenjie
    Zhu, Pingping
    Ferrari, Silvia
    Liu, Miao
    Klein, Robert H.
    Omidshafiei, Shayegan
    How, Jonathan P.
    [J]. AUTOMATICA, 2016, 74 : 360 - 368
  • [4] Probabilistic Nonparametric Model: Gaussian Process Regression
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 162 - 163
  • [5] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [6] Gaussian process methods for one-dimensional diffusions: Optimal rates and adaptation
    van Waaij, Jan
    van Zanten, Harry
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 628 - 645
  • [7] Nonparametric estimation of trend for SDEs driven by a Gaussian process
    Prakasa Rao, B. L. S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (17) : 6152 - 6159
  • [8] Hydraulic fracturing performance analysis by the mutual information and Gaussian process regression methods
    Yan, Xu
    Liu, Dehua
    Xu, Wenhua
    He, Denghui
    Hao, Haiyang
    [J]. ENGINEERING FRACTURE MECHANICS, 2023, 286
  • [9] ATS METHODS - NONPARAMETRIC REGRESSION FOR NON-GAUSSIAN DATA
    CLEVELAND, WS
    MALLOWS, CL
    MCRAE, JE
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) : 821 - 835
  • [10] Orthogonal shrinkage methods for nonparametric regression under Gaussian noise
    Hagiwara, Katsuyuki
    [J]. NEURAL INFORMATION PROCESSING, PART I, 2008, 4984 : 537 - 546