Emergence of three-dimensional order and structure in growing biofilms

被引:191
|
作者
Hartmann, Raimo [1 ,2 ]
Singh, Praveen K. [1 ]
Pearce, Philip [3 ]
Mok, Rachel [3 ,4 ]
Song, Boya [3 ]
Diaz-Pascual, Francisco [1 ]
Dunkel, Jorn [3 ]
Drescher, Knut [1 ,2 ]
机构
[1] Max Planck Inst Terr Microbiol, Marburg, Germany
[2] Philipps Univ Marburg, Dept Phys, Marburg, Germany
[3] MIT, Dept Math, Cambridge, MA 02139 USA
[4] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
欧洲研究理事会;
关键词
VIBRIO-CHOLERAE; MORPHOLOGY; ARCHITECTURE; DRIVEN; FLOW;
D O I
10.1038/s41567-018-0356-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Surface-attached bacterial biofilms are self-replicating active liquid crystals and the dominant form of bacterial life on Earth(1-4). In conventional liquid crystals and solid-state materials, the interaction potentials between the molecules that comprise the system determine the material properties. However, for growth-active biofilms it is unclear whether potential-based descriptions can account for the experimentally observed morphologies, and which potentials would be relevant. Here, we have overcome previous limitations of single-cell imaging techniques(5,6) to reconstruct and track all individual cells inside growing three-dimensional biofilms with up to 10,000 individuals. Based on these data, we identify, constrain and provide a microscopic basis for an effective cell-cell interaction potential, which captures and predicts the growth dynamics, emergent architecture and local liquid-crystalline order of Vibrio cholerae biofilms. Furthermore, we show how external fluid flows control the microscopic structure and three-dimensional morphology of biofilms. Our analysis implies that local cellular order and global biofilm architecture in these active bacterial communities can arise from mechanical cell-cell interactions, which cells can modulate by regulating the production of particular matrix components. These results establish an experimentally validated foundation for improved continuum theories of active matter and thereby contribute to solving the important problem of controlling biofilm growth.
引用
收藏
页码:251 / +
页数:10
相关论文
共 50 条
  • [1] Emergence of three-dimensional order and structure in growing biofilms
    Raimo Hartmann
    Praveen K. Singh
    Philip Pearce
    Rachel Mok
    Boya Song
    Francisco Díaz-Pascual
    Jörn Dunkel
    Knut Drescher
    Nature Physics, 2019, 15 : 251 - 256
  • [2] Three-dimensional architecture of Vibrio cholera biofilms
    Wong, Gerard C. L.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (14) : 3711 - 3713
  • [3] Fibre crosslinking drives the emergence of order in a three-dimensional dynamical network model
    Chassonnery, Pauline
    Paupert, Jenny
    Lorsignol, Anne
    Severac, Childerick
    Ousset, Marielle
    Degond, Pierre
    Casteilla, Louis
    Peurichard, Diane
    ROYAL SOCIETY OPEN SCIENCE, 2024, 11 (01):
  • [4] The Three-Dimensional Morphology of Growing Dendrites
    J. W. Gibbs
    K. A. Mohan
    E. B. Gulsoy
    A. J. Shahani
    X. Xiao
    C. A. Bouman
    M. De Graef
    P. W. Voorhees
    Scientific Reports, 5
  • [5] The Three-Dimensional Morphology of Growing Dendrites
    Gibbs, J. W.
    Mohan, K. A.
    Gulsoy, E. B.
    Shahani, A. J.
    Xiao, X.
    Bouman, C. A.
    De Graef, M.
    Voorhees, P. W.
    SCIENTIFIC REPORTS, 2015, 5
  • [6] Growing three-dimensional objects with light
    Lipkowitz, Gabriel
    Saccone, Max A.
    Panzer, Matthew A.
    Coates, Ian A.
    Hsiao, Kaiwen
    Ilyn, Daniel
    Kronenfeld, Jason M.
    Tumbleston, John R.
    Shaqfeh, Eric S. G.
    DeSimone, Joseph M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (28)
  • [7] Analysis of three-dimensional biofilms on different material surfaces
    Schiebel, Juliane
    Noack, Jonas
    Roediger, Stefan
    Kammel, Anne
    Menzel, Friederike
    Schwibbert, Karin
    Weise, Matthias
    Weiss, Romano
    Boehm, Alexander
    Nitschke, Jorg
    Elimport, Alexey
    Roggenbuck, Dirk
    Schierack, Peter
    BIOMATERIALS SCIENCE, 2020, 8 (12) : 3500 - 3510
  • [8] Structure of a large colloidal crystal - controlling orientation and three-dimensional order
    Hellsing, Maja S.
    Rennie, Adrian R.
    Heenan, Richard K.
    Rogers, Sarah E.
    RSC ADVANCES, 2012, 2 (18): : 7091 - 7098
  • [9] Three-dimensional spacetimes of maximal order
    Milson, R.
    Wylleman, L.
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (09)
  • [10] Three-dimensional structure of annexins
    S. Liemann
    R. Huber
    Cellular and Molecular Life Sciences CMLS, 1997, 53 : 516 - 521