Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data

被引:27
|
作者
Sun, Hailun [1 ,2 ,3 ]
Jiang, Rongtao [1 ,2 ,3 ]
Qi, Shile [4 ,5 ]
Narr, Katherine L. [6 ,7 ,8 ]
Wade, Benjamin S. C. [6 ,7 ,8 ]
Upston, Joel [9 ]
Espinoza, Randall [6 ,7 ,8 ]
Jones, Tom [9 ]
Calhoun, Vince D. [4 ,5 ]
Abbott, Christopher C. [9 ]
Sui, Jing [1 ,2 ,3 ,4 ,5 ,10 ]
机构
[1] Chinese Acad Sci, Brainnetome Ctr, Inst Automat, Beijing, Peoples R China
[2] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Beijing, Peoples R China
[4] Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Georgia Inst Technol, Atlanta, GA 30303 USA
[5] Emory Univ, Atlanta, GA 30322 USA
[6] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
[7] Univ Calif Los Angeles, Dept Psychiat, Los Angeles, CA USA
[8] Univ Calif Los Angeles, Dept Biobehav Sci, Los Angeles, CA USA
[9] Univ New Mexico, Dept Psychiat, Albuquerque, NM 87131 USA
[10] Chinese Acad Sci, Inst Automat, Ctr Excellence Brain Sci, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
Individualized prediction; Electroconvulsive therapy (ECT); Functional connectivity (FC); Major depressive disorder (DEP); Resting-state fMRI; HDRS; Treatment response; STAR-ASTERISK-D; DEPRESSION; CONNECTIVITY; METAANALYSIS; MIRTAZAPINE; REMISSION; ARTIFACT; ECT;
D O I
10.1016/j.nicl.2019.102080
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Electroconvulsive therapy (ECT) works rapidly and has been widely used to treat depressive disorders (DEP). However, identifying biomarkers predictive of response to ECT remains a priority to individually tailor treatment and understand treatment mechanisms. This study used a connectome-based predictive modeling (CPM) approach in 122 patients with DEP to determine if pre-ECT whole-brain functional connectivity (FC) predicts depressive rating changes and remission status after ECT (47 of 122 total subjects or 38.5% of sample), and whether pre-ECT and longitudinal changes (pre/post-ECT) in regional brain network biomarkers are associated with treatment-related changes in depression ratings. Results show the networks with the best predictive performance of ECT response were negative (anti-correlated) FC networks, which predict the post-ECT depression severity (continuous measure) with a 76.23% accuracy for remission prediction. FC networks with the greatest predictive power were concentrated in the prefrontal and temporal cortices and subcortical nuclei, and include the inferior frontal (IFG), superior frontal (SFG), superior temporal (STG), inferior temporal gyri (ITG), basal ganglia (BG), and thalamus (Tha). Several of these brain regions were also identified as nodes in the FC networks that show significant change pre-/post-ECT, but these networks were not related to treatment response. This study design has limitations regarding the longitudinal design and the absence of a control group that limit the causal inference regarding mechanism of post-treatment status. Though predictive biomarkers remained below the threshold of those recommended for potential translation, the analysis methods and results demonstrate the promise and generalizability of biomarkers for advancing personalized treatment strategies.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data
    Redlich, Ronny
    Opel, Nils
    Grotegerd, Dominik
    Dohm, Katharina
    Zaremba, Dario
    Buerger, Christian
    Muenker, Sandra
    Muehlmann, Lisa
    Wahl, Patricia
    Heindel, Walter
    Arolt, Volker
    Alferink, Judith
    Zwanzger, Peter
    Zavorotnyy, Maxim
    Kugel, Harald
    Dannlowski, Udo
    JAMA PSYCHIATRY, 2016, 73 (06) : 557 - 564
  • [2] Whole-Brain Functional Connectivity Dynamics Associated With Electroconvulsive Therapy Treatment Response
    Fu, Zening
    Sui, Jing
    Espinoza, Randall
    Narr, Katherine
    Qi, Shile
    Sendi, Mohammad S. E.
    Abbott, Christopher C.
    Calhoun, Vince D.
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2022, 7 (03) : 312 - 322
  • [3] Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways
    Ozdoba C.
    Nirkko A.C.
    Remonda L.
    Lövblad K.O.
    Schroth G.
    Neuroradiology, 2002, 44 (1) : 1 - 10
  • [4] Whole-brain functional magnetic resonance imaging of cerebral arteriovenous malformations involving the motor pathways
    Ozdoba, C
    Nirkko, AC
    Remonda, L
    Lövblad, KO
    Schroth, G
    NEURORADIOLOGY, 2002, 44 (01) : 1 - 10
  • [5] Individual Prediction of Electroconvulsive Therapy Response Using Multicenter Neuroimaging Data: For the GEMRIC Consortium
    Bruin, Willem
    Thomas, Rajat
    Dols, Annemiek
    van Wingen, Guido
    BIOLOGICAL PSYCHIATRY, 2019, 85 (10) : S68 - S68
  • [6] Individual Prediction of Electroconvulsive Therapy Response Using Multicenter Neuroimaging Data: For the GEMRIC Consortium
    Bruin, Willem
    Thomas, Rajat
    Dols, Annemiek
    van Wingen, Guido
    BIOLOGICAL PSYCHIATRY, 2020, 87 (09) : S298 - S298
  • [7] Individual prediction of electroconvulsive therapy response using multicenter neuroimaging data: For GEMRIC consortium
    Bruin, W.
    Thomas, R.
    Van Wingen, G.
    Dols, A.
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S700 - S700
  • [8] Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS
    Stagg, Charlotte J.
    Knight, Steven
    Talbot, Kevin
    Jenkinson, Mark
    Maudsley, Andrew A.
    Turner, Martin R.
    NEUROLOGY, 2013, 80 (07) : 610 - 615
  • [9] Rapid Whole-Brain Magnetic Resonance Imaging With Isotropic Resolution at 3 Tesla
    Edelman, Robert R.
    Dunkle, Eugene
    Koktzoglou, Ioannis
    Griffin, Andrew
    Russell, Eric J.
    Ankenbrandt, William
    Ragin, Ann
    Carrillo, Andres
    INVESTIGATIVE RADIOLOGY, 2009, 44 (01) : 54 - 59
  • [10] White matter changes on magnetic resonance imaging following whole-brain radiotherapy for brain metastases
    Fujii O.
    Tsujino K.
    Soejima T.
    Yoden E.
    Ichimiya Y.
    Sugimura K.
    Radiation Medicine, 2006, 24 (5): : 345 - 350