Dynamic models of neural spiking activity

被引:0
|
作者
Czanner, Gabriela [1 ]
Dreyer, Anna A. [2 ]
Eden, Uri T. [3 ]
Wirth, Sylvia [4 ]
Lim, Hubert H. [5 ]
Suzuki, Wendy A. [6 ]
Brown, Emery N. [1 ,2 ,7 ]
机构
[1] Massachusetts Gen Hosp, Dept Anesthesia & Crit Care, Neurosci Stat Res Lab, Boston, MA 02114 USA
[2] Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[3] Boston Univ, Dept Math & Stat, Boston, MA 02215 USA
[4] Ctr Natl Rech Sci, Ctr Neurosci Cognit, F-69675 Bron, France
[5] Hannover Med Sch, Dept Otorhinolaryngol, D-30625 Hannover, Germany
[6] NYU, Ctr Neural Sci, New York, NY 10003 USA
[7] MIT, Harbor Med Sch, Dept Brain & Cognit Sci, Cambridge, MA 02139 USA
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a state-space generalized linear model (SS-GLM) for characterizing neural spiking activity in multiple trials. We estimate the model parameters by maximum likelihood using an approximate Expectation-Maximization (EM) algorithm which employs a recursive point process filter, fixed-interval smoothing and state-space covariance algorithms. We assess model goodness-of-fit using the time-rescaling theorem and guide the choice of model order with Akaike's information criterion. We illustrate our approach in two applications. In the analysis of hippocampal neural activity recorded from a monkey performing a location-scene association task, we use the model to quantify the neural changes related to learning. In the analysis of primary auditory cortex responses to different levels of electrical stimulation in the rat midbrain, we use the method to analyze auditory threshold detection. Our findings have important implications for developing theoretically-sound and practical tools to characterize the dynamics of spiking activity.
引用
收藏
页码:4173 / +
页数:2
相关论文
共 50 条
  • [1] Randomly Spiking Dynamic Neural Fields
    De Vangel, Benoit Chappet
    Torres-Huitzil, Cesar
    Girau, Bernard
    [J]. ACM JOURNAL ON EMERGING TECHNOLOGIES IN COMPUTING SYSTEMS, 2015, 11 (04)
  • [2] Dynamic Spiking Graph Neural Networks
    Yin, Nan
    Wang, Mengzhu
    Chen, Zhenghan
    De Masi, Giulia
    Xiong, Huan
    Gu, Bin
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16495 - 16503
  • [3] Spiking Neural Membrane Computing Models
    Liu, Xiyu
    Ren, Qianqian
    [J]. PROCESSES, 2021, 9 (05)
  • [4] Models developed for spiking neural networks
    Shirsavar, Shahriar Rezghi
    Vahabie, Abdol-Hossein
    Dehaqani, Mohammad-Reza A.
    [J]. METHODSX, 2023, 10
  • [5] A Granger Causality Measure for Point Process Models of Ensemble Neural Spiking Activity
    Kim, Sanggyun
    Putrino, David
    Ghosh, Soumya
    Brown, Emery N.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (03)
  • [6] Construction and analysis of non-Gaussian spatial models of neural spiking activity
    Barbieri, R
    Frank, LM
    Quirk, MC
    Solo, V
    Wilson, MA
    Brown, EN
    [J]. NEUROCOMPUTING, 2002, 44 : 309 - 314
  • [7] Spiking dynamic neural fields architectures on FPGA
    de Vangel, Benoit Chappet
    Torres-Huitzil, Cesar
    Girau, Bernard
    [J]. 2014 INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND FPGAS (RECONFIG), 2014,
  • [8] Stochastic and Asynchronous Spiking Dynamic Neural Fields
    de Vangel, Benoit Chappet
    Torres-Huitzil, Cesar
    Girau, Bernard
    [J]. 2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [9] Dynamic Reactive Spiking Graph Neural Network
    Zhao, Han
    Yang, Xu
    Deng, Cheng
    Yan, Junchi
    [J]. THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16970 - 16978
  • [10] Dynamic path planning with spiking neural networks
    Roth, U
    Walker, M
    Hilmann, A
    Klar, H
    [J]. BIOLOGICAL AND ARTIFICIAL COMPUTATION: FROM NEUROSCIENCE TO TECHNOLOGY, 1997, 1240 : 1355 - 1363