The topology of moduli spaces of group representations: The case of compact surface

被引:7
|
作者
Biswas, Indranil [1 ]
Florentino, Carlos [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Inst Super Tecn, Dept Matemat, P-1049001 Lisbon, Portugal
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2011年 / 135卷 / 04期
关键词
Flat connection; Higgs bundle; Representation; PRINCIPAL BUNDLES;
D O I
10.1016/j.bulsci.2011.02.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a connected complex semisimple affine algebraic group, and let K be a maximal compact subgroup of G. Let X be a noncompact oriented surface. The main theorem of Florentino and Lawton (2009) [3] says that the moduli space of flat K-connections on X is a strong deformation retraction of the moduli space of flat G-connections on X. We prove that this statement fails whenever X is compact of genus at least two. (C) 2011 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 50 条
  • [1] The topology of moduli spaces of free group representations
    Florentino, Carlos
    Lawton, Sean
    MATHEMATISCHE ANNALEN, 2009, 345 (02) : 453 - 489
  • [2] The topology of moduli spaces of free group representations
    Carlos Florentino
    Sean Lawton
    Mathematische Annalen, 2009, 345 : 453 - 489
  • [3] Topology of moduli spaces of free group representations in real reductive groups
    Casimiro, Ana
    Florentino, Carlos
    Lawton, Sean
    Oliveira, Andre
    FORUM MATHEMATICUM, 2016, 28 (02) : 275 - 294
  • [4] Fundamental group of moduli spaces of representations
    Biswas, Indranil
    Lawton, Sean
    GEOMETRIAE DEDICATA, 2015, 178 (01) : 135 - 141
  • [5] Fundamental group of moduli spaces of representations
    Indranil Biswas
    Sean Lawton
    Geometriae Dedicata, 2015, 178 : 135 - 141
  • [6] Spaces of surface group representations
    Mann, Kathryn
    INVENTIONES MATHEMATICAE, 2015, 201 (02) : 669 - 710
  • [7] Spaces of surface group representations
    Kathryn Mann
    Inventiones mathematicae, 2015, 201 : 669 - 710
  • [8] On the connectedness of the spaces of surface group representations
    Ho, NK
    Liu, CCM
    Noncommutative Geometry and Physics, 2005, : 199 - 214
  • [9] THE GEOMETRY AND TOPOLOGY OF MODULI SPACES
    HITCHIN, NJ
    LECTURE NOTES IN MATHEMATICS, 1990, 1451 : 1 - 48
  • [10] Topology of the moduli of representations with Borel mold
    Nakamoto, K
    Torii, T
    PACIFIC JOURNAL OF MATHEMATICS, 2004, 213 (02) : 365 - 387