A tool to visualize and analyze perfusion data: Development and application of the R package "CTP"

被引:1
|
作者
Lirette, Seth T. [1 ]
Smith, Andrew D. [2 ]
Aban, Inmaculada B. [3 ]
机构
[1] Univ Mississippi, Med Ctr, Dept Data Sci, 2500 North State St, Jackson, MS 39216 USA
[2] Univ Alabama Birmingham, Dept Radiol, 1720 2nd Ave S, Birmingham, AL 35294 USA
[3] Univ Alabama Birmingham, Dept Biostat, 1720 2nd Ave S, Birmingham, AL 35294 USA
关键词
ARTERIAL INPUT FUNCTION; CEREBRAL-BLOOD-FLOW; ISCHEMIC-STROKE; ACCURACY; MRI;
D O I
10.1016/j.cmpb.2017.09.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background and objective: Computed tomography perfusion (CTP) is a widely used imaging modality especially in neuroimaging. Despite this, CTP is often prohibitive due to the dearth of free/open-source software. This could have wide-ranging implications for instruction and research. We have implemented an online-available CTP tool built and run completely within the R computing environment. Methods: Called from within R, the user can select one of four different methods to construct a cerebral blood flow (CBF) map: (1) max-slope (2) singular value decomposition (3) block circulant singular value decomposition or (4) oscillation minimization singular value decomposition. The four methods are compared against a digital CBF phantom. Results: All four methods generate a CBF map, with the oscillation minimization technique giving the most accurate map. Conclusions: We have constructed an easily accessible teaching and research tool to create a CBF map and made it freely available. We hope this tool will help facilitate understanding of the methods involved in constructing perfusion maps and be a valuable resource to future researchers. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [1] acc: An R package to process, visualize, and analyze accelerometer data
    Song, Jaejoon
    Swartz, Michael D.
    Basen-Engquist, Karen
    SOFTWARE IMPACTS, 2023, 18
  • [2] geoChronR - an R package to model, analyze, and visualize age-uncertain data
    McKay, Nicholas P.
    Emile-Geay, Julien
    Khider, Deborah
    GEOCHRONOLOGY, 2021, 3 (01): : 149 - 169
  • [3] DiffCorr: An R package to analyze and visualize differential correlations in biological networks
    Fukushima, Atsushi
    GENE, 2013, 518 (01) : 209 - 214
  • [5] ordinalClust: An R Package to Analyze Ordinal Data
    Selosse, Margot
    Jacques, Julien
    Biernacki, Christophe
    R JOURNAL, 2020, 12 (02): : 61 - 81
  • [6] Analyze the trends of customer purchase data and visualize by the Shiny application
    Konda, Kazuki
    Yamamoto, Yoshiro
    2018 16TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2018, : 52 - 57
  • [7] compositions: A unified R package to analyze compositional data
    van den Boogaart, K. Gerald
    Tolosana-Delgado, R.
    COMPUTERS & GEOSCIENCES, 2008, 34 (04) : 320 - 338
  • [8] rbioacc: An R-package to analyze toxicokinetic data
    Ratier, Aude
    Baudrot, Virgile
    Kaag, Milena
    Siberchicot, Aurelie
    Lopes, Christelle
    Charles, Sandrine
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2022, 242
  • [9] DTDA: An R Package to Analyze Randomly Truncated Data
    Moreira, Carla
    de Una-Alvarez, Jacobo
    Crujeiras, Rosa M.
    JOURNAL OF STATISTICAL SOFTWARE, 2010, 37 (07): : 1 - 20
  • [10] easyXpress: An R package to analyze and visualize high-throughput C. elegans microscopy data generated using CellProfiler
    Nyaanga, Joy
    Crombie, Timothy A.
    Widmayer, Samuel J.
    Andersen, Erik C.
    PLOS ONE, 2021, 16 (08):