A neuro-fuzzy evaluation of steel beams patch load behaviour

被引:26
|
作者
Fonseca, E. T. [1 ]
Veasco, P. C. G. da S. [1 ]
Vellasco, M. M. B. R. [2 ,3 ]
de Andrade, S. A. L. [1 ,4 ]
机构
[1] Univ Estado Rio De Janeiro, Dept Struct Engn, UERJ, Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Elect Engn, PUC RIO, BR-22453 Rio De Janeiro, Brazil
[3] Univ Estado Rio De Janeiro, Dept Syst Engn, UERJ, Rio De Janeiro, Brazil
[4] Pontificia Univ Catolica Rio de Janeiro, Dept Civil Engn, PUC RIO, BR-22453 Rio De Janeiro, Brazil
关键词
patch load; steel structures; neural networks; fuzzy inference system; web buckling; web crippling and yielding; structural design and behaviour;
D O I
10.1016/j.advengsoft.2007.07.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a neuro-fuzzy system developed to predict and classify the behaviour of steel beam web panels subjected to concentrated loads. A good performance was obtained with a previously developed neural network system [Fonseca ET, Vellasco MMBR, Vellasco PCGdaS, de Andrade SAL, Pacheco MAC. A neural network system for patch load prediction. J Intel] Robot Syst 2001; 31(1/3):185-200; Fonseca ET, Vellasco PCGdaS, de Andrade SAL, Vellasco MMBR. A patch load parametric analysis using neural networks. J Constr Steel Res 2003;59(2):251-67; Fonseca FT, Vellasco PCGdaS, de Andrade SAL, Vellasco, MMBR. Neural network evaluation of steel beam patch load capacity. Adv Eng Software 2003;34(11-12):763-72] when compared to available experimental data. The neural network accuracy was also significantly better than existing patch load prediction formulae [Lyse 1, Godfrey HJ. Investigation of web buckling in steel beams. ASCE Trans 1935;100:675-95, paper 1907; Bergfelt A. Patch loading on slender web. Influence of horizontal and vertical web stiffeners on the load carrying capacity, S79:1. Goteborg: Chalmers University of Technology, Publication; 1979, p. 1-143; Skaloud M, Drdacky M. Ultimate load design of webs of steel plated structures - Part 3 webs under concentrated loads. Staveb Cas 1975;23(C3):140-60; Roberts TM, Newark ACB. Strength of webs subjected to compressive edge loading. J Struct Eng Am Soc Civil Eng 1997;123(2):176-831. Despite this fact, the system architecture did not explicitly considered the fundamental different structural behaviour related to the beam collapse (web and flange yielding, web buckling and web crippling). Therefore this paper presents a neuro-fuzzy system that takes into account the patch load ultimate limit state. The neuro-fuzzy system architecture is composed of one neuro-fuzzy classification model and one patch load prediction neural network. The neuro-fuzzy model is used to classify the beams according to its pertinence to a specific structural response. Then, a neural network uses the pertinence established by the neuro-fuzzy classification model, to finally determine the beam patch load resistance. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:558 / 572
页数:15
相关论文
共 50 条
  • [1] A neuro-fuzzy system for steel beams patch load prediction
    Fonseca, ET
    Vellasco, PCGDS
    Vellasco, MMBR
    de Andrade, SAL
    [J]. HIS 2005: 5th International Conference on Hybrid Intelligent Systems, Proceedings, 2005, : 110 - 115
  • [2] A parametric analysis of the patch load behaviour using a neuro-fuzzy system
    Fonseca, Elaine T.
    de Andrade, Sebastiao A. L.
    Vellasco, Pedro C. G. da S.
    Vellasco, Marley M. B. R.
    [J]. JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2007, 63 (02) : 194 - 210
  • [3] A neuro-fuzzy system for patch load prediction
    Fonseca, E. T.
    Vellasco, P. C. G. da S.
    Vellasco, M. M. B. R.
    de Andrade, S. A. L.
    [J]. Proceedings of The Seventh International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2003, : 113 - 114
  • [4] Neuro-Fuzzy modeling of torsional strength of RC beams
    Department of Civil Engineering, University of Gaziantep, Gaziantep, Turkey
    不详
    不详
    [J]. Comput. Concr., 6 (469-486):
  • [5] Neuro-Fuzzy modeling of torsional strength of RC beams
    Cevik, A.
    Arslan, M. H.
    Saracoglu, R.
    [J]. COMPUTERS AND CONCRETE, 2012, 9 (06): : 469 - 486
  • [6] Neuro-Fuzzy System for Prediction of Telecommunication Channel Load
    Polshchykov, Kostiantyn
    Zdorenko, Yuriy
    Masesov, Mykola
    [J]. 2015 SECOND INTERNATIONAL SCIENTIFIC-PRACTICAL CONFERENCE PROBLEMS OF INFOCOMMUNICATIONS SCIENCE AND TECHNOLOGY (PIC S&T 2015), 2015, : 33 - 34
  • [7] Modelling of dam behaviour based on neuro-fuzzy identification
    Rankovic, Vesna
    Grujovic, Nenad
    Divac, Dejan
    Milivojevic, Nikola
    Novakovic, Aleksandar
    [J]. ENGINEERING STRUCTURES, 2012, 35 : 107 - 113
  • [8] A Neuro-fuzzy approach for user behaviour classification and prediction
    Atta-ur-Rahman
    Dash, Sujata
    Luhach, Ashish Kr
    Chilamkurti, Naveen
    Baek, Seungmin
    Nam, Yunyoung
    [J]. JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2019, 8 (01):
  • [9] LOAD FLOW ANALYSIS WITH A NEURO-FUZZY MODEL OF AN INDUCTION MOTOR LOAD
    Muriithi, C. M.
    Ngoo, L. M.
    Nyakoe, G. N.
    [J]. 2009 AFRICON, VOLS 1 AND 2, 2009, : 154 - 157
  • [10] A Neuro-fuzzy approach for user behaviour classification and prediction
    Sujata Atta-ur-Rahman
    Ashish Kr. Dash
    Naveen Luhach
    Seungmin Chilamkurti
    Yunyoung Baek
    [J]. Journal of Cloud Computing, 8