Criteria for unconstrained global optimization

被引:14
|
作者
Demidenko, E. [1 ,2 ]
机构
[1] Dartmouth Coll, Dept Biostat, Hanover, NH 03755 USA
[2] Dartmouth Coll, Dept Math, Hanover, NH 03755 USA
关键词
existence; nonconvex optimization; minimization; least squares; maximum likelihood;
D O I
10.1007/s10957-007-9298-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We develop criteria for the existence and uniqueness of the global minima of a continuous bounded function on a noncompact set. Special attention is given to the problem of parameter estimation via minimization of the sum of squares in nonlinear regression and maximum likelihood. Definitions of local convexity and unimodality are given using the level set. A fundamental theorem of nonconvex optimization is formulated: If a function approaches the minimal limiting value at the boundary of the optimization domain from below and its Hessian matrix is positive definite at the point where the gradient vanishes, then the function has a unique minimum. It is shown that the local convexity level of the sum of squares is equal to the minimal squared radius of the regression curvature. A new multimodal function is introduced, the decomposition function, which can be represented as the composition of a convex function and a nonlinear function from the argument space to a space of larger dimension. Several general global criteria based on majorization and minorization functions are formulated.
引用
收藏
页码:375 / 395
页数:21
相关论文
共 50 条
  • [1] Criteria for Unconstrained Global Optimization
    E. Demidenko
    [J]. Journal of Optimization Theory and Applications, 2008, 136 : 375 - 395
  • [2] Criteria for unconstrained global optimization in nonconvex problems
    Demidenko, Eugene
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 147 - 150
  • [3] Global descent methods for unconstrained global optimization
    Z. Y. Wu
    D. Li
    L. S. Zhang
    [J]. Journal of Global Optimization, 2011, 50 : 379 - 396
  • [4] Global descent methods for unconstrained global optimization
    Wu, Z. Y.
    Li, D.
    Zhang, L. S.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (03) : 379 - 396
  • [5] FILLED FUNCTIONS FOR UNCONSTRAINED GLOBAL OPTIMIZATION
    Xu Zheng Xu ChengxianFaculty of Electrical Engineering
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2000, (03) : 307 - 318
  • [6] Filled functions for unconstrained global optimization
    Xu, Z
    Huang, HX
    Pardalos, PM
    Xu, CX
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2001, 20 (01) : 49 - 65
  • [7] Subset simulation for unconstrained global optimization
    Li, Hong-Shuang
    [J]. APPLIED MATHEMATICAL MODELLING, 2011, 35 (10) : 5108 - 5120
  • [8] Filled functions for unconstrained global optimization
    Zheng Xu
    Hong-Xuan Huang
    Panos M. Pardalos
    Cheng-Xian Xu
    [J]. Journal of Global Optimization, 2001, 20 : 49 - 65
  • [9] Filled functions for unconstrained global optimization
    Xu Z.
    Xu C.
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2000, 15 (3) : 307 - 318
  • [10] Extended Global Convergence Framework for Unconstrained Optimization
    rpád BRMEN
    Franc BRATKOVI
    Janez PUHAN
    Iztok FAJFAR
    Tadej TUMA
    [J]. Acta Mathematica Sinica,English Series, 2004, 20 (03) : 433 - 440