Numerical solvers based on the method of approximate inverse for 2D vector and 2-tensor tomography problems

被引:11
|
作者
Derevtsov, E. Yu [1 ,2 ]
Louis, A. K. [3 ]
Maltseva, S. V. [1 ,2 ,4 ]
Polyakova, A. P. [1 ,2 ]
Svetov, I. E. [1 ,2 ]
机构
[1] SB RAS, Sobolev Inst Math, Acad Koptyug Av 4, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Pirogova Str 2, Novosibirsk 630090, Russia
[3] Saarland Univ, Dept Math, D-66041 Saarbrucken, Germany
[4] Lavrentyev Inst Hydrodynam, Acad Lavrentyev Av 15, Novosibirsk 630090, Russia
关键词
tensor tomography; ray transform; method of approximate inverse; FIELD TOMOGRAPHY; RAY TRANSFORMS; DESIGN;
D O I
10.1088/1361-6420/aa8f5a
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A problem of reconstruction of 2D vector or symmetric 2-tensor fields by their known ray transforms is considered. Two numerical approaches based on the method of approximate inverse are suggested for solving the problem. The first method allows to recover components of a vector or tensor field, and the second reconstructs its potentials in the sense of feature reconstruction, where the observation operator assigns to a field its potential. Numerical simulations show good results of reconstruction of the sought-for fields or their solenoidal or potential parts from its ray transforms.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical solution of 2D-vector tomography problem using the method of approximate inverse
    Svetov, Ivan
    Maltseva, Svetlana
    Polyakova, Anna
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2016), 2016, 1759
  • [2] The Method of Approximate Inverse in Slice-by-Slice Vector Tomography Problems
    Svetov, Ivan E.
    Maltseva, Svetlana, V
    Louis, Alfred K.
    NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS, PT II, 2020, 11974 : 487 - 494
  • [3] COMPARISON OF SOLVERS FOR 2D SCHRODINGER PROBLEMS
    Gaspar, F. J.
    Rodrigo, C.
    Ciegis, R.
    Mirinavicius, A.
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (01) : 131 - 147
  • [4] THE METHOD OF APPROXIMATE INVERSE FOR THE RADON TRANSFORM OPERATOR ACTING ON FUNCTIONS AND FOR THE NORMAL RADON TRANSFORM OPERATORS ACTING ON VECTOR AND SYMMETRIC 2-TENSOR FIELDS IN R3
    Svetov, Ivan Evgenyevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1073 - 1087
  • [5] Inverse Design Method for the 2D Problems of Thermal Cloaking
    Alekseev, G. V.
    Soboleva, O. V.
    Piskun, I. V.
    2017 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM - SPRING (PIERS), 2017, : 1349 - 1353
  • [6] The method of fundamental solutions for inverse 2D Stokes problems
    C. W. Chen
    D. L. Young
    C. C. Tsai
    K. Murugesan
    Computational Mechanics, 2005, 37 : 2 - 14
  • [7] The method of fundamental solutions for inverse 2D Stokes problems
    Chen, CW
    Young, DL
    Tsai, CC
    Murugesan, K
    COMPUTATIONAL MECHANICS, 2005, 37 (01) : 2 - 14
  • [8] Some computational tests for inverse conductivity problems based on vector, variational principles: The 2D case
    Bandeira, L.
    Pedregal, P.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 218 : 704 - 721
  • [9] APPROXIMATE SOLUTION OF TWO-DIMENSIONAL 2-TENSOR TOMOGRAPHY PROBLEM USING TRUNCATED SINGULAR VALUE DECOMPOSITION
    Svetov, I. E.
    Polyakova, A. P.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 480 - 499
  • [10] A numerical solver based on B-splines for 2D vector field tomography in a refracting medium
    Svetov, I. E.
    Derevtsov, E. Yu.
    Volkov, Yu. S.
    Schuster, T.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 97 : 207 - 223