A primal-dual interior point algorithm for convex quadratic programming based on a new parametric kernel function

被引:8
|
作者
Boudjellal, N. [1 ]
Roumili, H. [1 ]
Benterki, D. J. [1 ]
机构
[1] Univ Ferhat Abbas Setif 1, Fac Sci, Lab Fundamental & Numer Math, Dept Math, Setif, Algeria
关键词
Convex quadratic programming; interior point methods; kernel function; COMPLEXITY ANALYSIS;
D O I
10.1080/02331934.2020.1751156
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we deal with a polynomial primal-dual interior-point algorithm for solving convex quadratic programming based on a new parametric kernel function with an exponential barrier term. The proposed kernel function is not logarithmic and not self-regular. We analyze a class of large and small-update versions which are based on our new kernel function. The complexity obtained generalizes the result given by Bai et al. This result is the first to reach this goal. Finally, some numerical results are provided to show the efficiency of the proposed algorithm and to compare it with an available method.
引用
收藏
页码:1703 / 1724
页数:22
相关论文
共 50 条
  • [1] A Primal-Dual Interior-Point Algorithm for Convex Quadratic Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Bai, Yanqin
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 748 - +
  • [2] A primal-dual interior-point algorithm for convex quadratic semidefinite optimization based on a new kernel function
    Pang, Jinjuan
    Zhang, Mingwang
    Chen, Yuejiao
    Huang, Zhengwei
    [J]. INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2015, 53 (06): : 22 - 37
  • [3] Primal-dual Feasible Interior Point Algorithm for Convex Quadratic Programming
    Yong, Longquan
    [J]. PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 3, 2009, : 109 - 113
  • [4] A PRIMAL-DUAL INTERIOR-POINT ALGORITHM BASED ON A NEW KERNEL FUNCTION
    Cho, G. M.
    Cho, Y. Y.
    Lee, Y. H.
    [J]. ANZIAM JOURNAL, 2010, 51 (04): : 476 - 491
  • [5] Complexity analysis of primal-dual interior-point methods for convex quadratic programming based on a new twice parameterized kernel function
    Bouhenache, Youssra
    Chikouche, Wided
    Touil, Imene
    Fathi-Hafshejani, Sajad
    [J]. JOURNAL OF MATHEMATICAL MODELING, 2024, 12 (02): : 247 - 265
  • [6] IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming
    Rui-Jin Zhang
    Xin-Wei Liu
    Yu-Hong Dai
    [J]. Journal of Global Optimization, 2023, 87 : 1027 - 1053
  • [7] IPRQP: a primal-dual interior-point relaxation algorithm for convex quadratic programming
    Zhang, Rui-Jin
    Liu, Xin-Wei
    Dai, Yu-Hong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (2-4) : 1027 - 1053
  • [8] A primal-dual interior-point algorithm for quadratic programming
    Dominguez, Juan
    Gonzalez-Lima, Maria D.
    [J]. NUMERICAL ALGORITHMS, 2006, 42 (01) : 1 - 30
  • [9] A primal-dual interior-point algorithm for quadratic programming
    Juan Dominguez
    María D. González-Lima
    [J]. Numerical Algorithms, 2006, 42 : 1 - 30
  • [10] An Infeasible Primal-Dual Interior-Point Algorithm for Linearly Constrained Convex Optimization Based on A Parametric Kernel Function
    Wang, Guoqiang
    Wang, Baocun
    Fan, Qingduan
    [J]. INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL SCIENCES AND OPTIMIZATION, VOL 2, PROCEEDINGS, 2009, : 900 - +