Effective boundary condition for a quasi-Newtonian viscous fluid at a slightly rough boundary starting from a Navier condition

被引:5
|
作者
Suarez-Grau, Francisco J. [1 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Numerico, Seville 41012, Spain
关键词
Quasi-Newtonian fluid; Navier boundary condition; rough boundary; SHEAR-DEPENDENT VISCOSITY; 2-SCALE CONVERGENCE; STOKES EQUATIONS; STEADY FLOWS; HOMOGENIZATION; RUGOSITY; BEHAVIOR; DOMAINS; SYSTEM; WALL;
D O I
10.1002/zamm.201300160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the quasi-Newtonian flow in a domain with a periodic rough bottom Gamma(epsilon) of period of order the small parameter epsilon and amplitude delta(epsilon), such that delta(epsilon) << epsilon. The flow is described by the 3D incompressible non-Newtonian Navier-Stokes system where the viscosity is given by the non linear power law which is widely used for dilatant fluids ( shear thickening). Assuming that the fluid satisfies the Navier slip condition on Gamma(epsilon) and letting epsilon -> 0, we obtain three different macroscopic models depending on the magnitude of delta(epsilon) with respect to epsilon(2p-1/p), with p > 2. In the case delta(epsilon) >> epsilon(2p-1/p) the effective boundary condition in the limit epsilon = 0 is the no-slip condition, while if delta(epsilon) << epsilon(2p-1/p) there is no roughness-induced effect. In the critical case when delta(epsilon) similar to epsilon(2p-1/p) we provide a more accurate effective boundary condition of Navier type. Finally, we also obtain corrector result for the pressure and velocity in every cases. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:527 / 548
页数:22
相关论文
共 50 条
  • [1] Effective boundary condition at a rough surface starting from a slip condition
    Dalibard, Anne-Laure
    Gerard-Varet, David
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (12) : 3450 - 3487
  • [2] A viscous fluid in a thin domain satisfying the slip condition on a slightly rough boundary
    Casado-Diaz, Juan
    Luna-Laynez, Manuel
    Javier Suarez-Grau, Francisco
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (17-18) : 967 - 971
  • [3] An Artificial Boundary Condition for a Class of Quasi-Newtonian Stokes Flows
    Liu, Baoqing
    Chen, Qing
    Du, Qikui
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2014, 4 (01) : 35 - 51
  • [4] On the Navier boundary condition for viscous fluids in rough domains
    Casado-Díaz J.
    Luna-Laynez M.
    Suárez-Grau F.J.
    [J]. SeMA Journal, 2012, 58 (1): : 5 - 24
  • [5] A Posteriori Error Estimators for the Quasi-Newtonian Stokes Problem with a General Boundary Condition
    El Moutea, Omar
    El Ouadefli, Lahcen
    El Akkad, Abdeslam
    Nakbi, Nadia
    Elkhalfi, Ahmed
    Scutaru, Maria Luminita
    Vlase, Sorin
    [J]. MATHEMATICS, 2023, 11 (08)
  • [6] Newtonian flow with nonlinear Navier boundary condition
    Matthews, M. T.
    Hill, J. M.
    [J]. ACTA MECHANICA, 2007, 191 (3-4) : 195 - 217
  • [7] Newtonian flow with nonlinear Navier boundary condition
    M. T. Matthews
    J. M. Hill
    [J]. Acta Mechanica, 2007, 191 : 195 - 217
  • [8] Isobaric Vortex Flow of a Viscous Incompressible Fluid with the Navier Boundary Condition
    Gorshkov, A. V.
    Prosviryakov, E. Yu.
    [J]. MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018), 2018, 2053
  • [9] Unidirectional Thermocapillary Flows of a Viscous Incompressible Fluid with the Navier Boundary Condition
    Burmasheva, N. V.
    Prosviryakov, E. Yu.
    [J]. MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2019), 2019, 2176
  • [10] ASYMPTOTIC BEHAVIOR OF THE NAVIER-STOKES SYSTEM IN A THIN DOMAIN WITH NAVIER CONDITION ON A SLIGHTLY ROUGH BOUNDARY
    Casado-Diaz, J.
    Luna-Laynez, M.
    Suarez-Grau, F. J.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) : 1641 - 1674