Data-driven Texture Modeling and Rendering on Electrovibration Display

被引:1
|
作者
Cho, Seongwon [1 ]
Osgouei, Reza Haghighi [2 ]
Kim, Jin Ryong [3 ]
Choi, Seungmoon [1 ]
机构
[1] POSTECH, Pohang, South Korea
[2] Imperial Coll London, London, England
[3] Alibaba Res, Sunnyvale, CA USA
关键词
Surface Haptics; Electrovibration Display; Texture Rendering;
D O I
10.1145/3343055.3360743
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a data-driven method for realistic texture rendering on an electrovibration display. To compensate the nonlinear dynamics of an electrovibration display, we use nonlinear autoregressive with external input (NARX) neural networks as an inverse dynamics model of an electrovibration display. The neural networks are trained with lateral forces resulting from actuating the display with a pseudo-random binary signal (PRBS). The lateral forces collected from the textured surface with various scanning velocities and normal forces are fed into the neural network to generate the actuation signal for the display. For arbitrary scanning velocity and normal force, we apply the two-step interpolation scheme between the closest neighbors in the velocity-force grid.
引用
收藏
页码:323 / 325
页数:3
相关论文
共 50 条
  • [1] Data-Driven Texture Modeling and Rendering on Electrovibration Display
    Osgouei, Reza Haghighi
    Kim, Jin Ryong
    Choi, Seungmoon
    [J]. IEEE TRANSACTIONS ON HAPTICS, 2020, 13 (02) : 298 - 311
  • [2] An Inverse Neural Network Model for Data-Driven Texture Rendering on Electrovibration Display
    Osgouei, Reza Haghighi
    Shin, Sunghwan
    Kim, Jin Ryong
    Choi, Seungmoon
    [J]. 2018 IEEE HAPTICS SYMPOSIUM (HAPTICS), 2018, : 270 - 277
  • [3] Data-Driven Texture Rendering on an Electrostatic Tactile Display
    Ilkhani, Gholamreza
    Aziziaghdam, Mohammad
    Samur, Evren
    [J]. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION, 2017, 33 (09) : 756 - 770
  • [4] Data-Driven Texture Rendering with Electrostatic Attraction
    Ilkhani, Gholamreza
    Aziziaghdam, Mohammad
    Samur, Evren
    [J]. HAPTICS: NEUROSCIENCE, DEVICES, MODELING, AND APPLICATIONS, 2014, 8618 : 496 - 504
  • [5] Data-Driven Haptic Texture Modeling and Rendering Based on Deep Spatio-Temporal Networks
    Joolee, Joolekha Bibi
    Jeon, Seokhee
    [J]. IEEE TRANSACTIONS ON HAPTICS, 2022, 15 (01) : 62 - 67
  • [6] Data-Driven Haptic Modeling and Rendering of Viscoelastic and Frictional Responses of Deformable Objects
    Yim, Sunghoon
    Jeon, Seokhee
    Choi, Seungmoon
    [J]. IEEE TRANSACTIONS ON HAPTICS, 2016, 9 (04) : 548 - 559
  • [7] Data-Driven Haptic Modeling and Rendering of Viscoelastic Behavior Using Fractional Derivatives
    Cha, Hojun
    Bhardwaj, Amit
    Choi, Seungmoon
    [J]. IEEE ACCESS, 2022, 10 : 130894 - 130907
  • [8] Data-Driven Modeling and Rendering of Force Responses from Elastic Tool Deformation
    Abdulali, Arsen
    Rakhmatov, Ruslan
    Ogay, Tatyana
    Jeon, Seokhee
    [J]. SENSORS, 2018, 18 (01):
  • [9] Data-Driven Haptic Modeling and Rendering of Deformable Objects Including Sliding Friction
    Yim, Sunghoon
    Jeon, Seokhee
    Choi, Seungmoon
    [J]. 2015 IEEE WORLD HAPTICS CONFERENCE (WHC), 2015, : 305 - 312
  • [10] A new texture descriptor for data-driven constitutive modeling of anisotropic plasticity
    Jan Schmidt
    Alexander Hartmaier
    [J]. Journal of Materials Science, 2023, 58 : 14029 - 14050