Bayesian D-Optimal Design Issues for Binomial Generalized Linear Model Screening Designs

被引:1
|
作者
Hassler, Edgar [1 ]
Montgomery, Douglas C. [1 ]
Silvestrini, Rachel T. [2 ]
机构
[1] Arizona State Univ, Tempe, AZ 85281 USA
[2] Naval Postgrad Sch, Monterey, CA USA
关键词
Challenger data set; Confidence intervals; Non-linear designs; INTERVAL ESTIMATION; PROPORTION; ROBUST;
D O I
10.1007/978-3-319-12355-4_20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Bayesian D-optimal designs have become computationally feasible to construct for simple prior distributions. Some parameter values give rise to models that have little utility to the practitioner for effect screening. For some generalized linear models such as the binomial, inclusion of such models can cause the optimal design to spread out toward the boundary of the design space. This can reduce the D-efficiency of the design over much of the parameter space and result in the Bayesian D-optimal criterion's divergence from the concerns of a practitioner designing a screening experiment.
引用
收藏
页码:337 / 353
页数:17
相关论文
共 50 条
  • [1] Bayesian D-optimal designs for generalized linear models with a varying dispersion parameter
    Pinto, ER
    de Leon, AP
    [J]. MODA 7 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, PROCEEDINGS, 2004, : 143 - 151
  • [2] Generalized Bayesian D-optimal supersaturated multistratum designs
    Lin, Chang-Yun
    [J]. QUALITY ENGINEERING, 2020, 32 (02) : 212 - 222
  • [3] BAYESIAN D-OPTIMAL AND MODEL ROBUST DESIGNS IN LINEAR-REGRESSION MODELS
    DETTE, H
    [J]. STATISTICS, 1993, 25 (01) : 27 - 46
  • [4] D-optimal Factorial Designs under Generalized Linear Models
    Yang, Jie
    Mandal, Abhyuday
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (09) : 2264 - 2277
  • [5] Bayesian D-optimal supersaturated designs
    Jones, Bradley
    Lin, Dennis K. J.
    Nachtsheim, Christopher J.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (01) : 86 - 92
  • [6] Sequential D-optimal designs for generalized linear mixed models
    Sinha, Sanjoy K.
    Xu, Xiaojian
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) : 1394 - 1402
  • [7] A MINE Alternative to D-Optimal Designs for the Linear Model
    Bouffier, Amanda M.
    Arnold, Jonathan
    Schuettler, H. Bernd
    [J]. PLOS ONE, 2014, 9 (10):
  • [8] BAYESIAN D-OPTIMAL DESIGNS FOR THE EXPONENTIAL-GROWTH MODEL
    MUKHOPADHYAY, S
    HAINES, LM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1995, 44 (03) : 385 - 397
  • [9] Filling and D-optimal Designs for the Correlated Generalized Exponential Model
    Rodriguez-Diaz, Juan M.
    Santos-Martin, Teresa
    Stehlik, Milan
    Waldl, Helmut
    [J]. MODA 9 - ADVANCES IN MODEL-ORIENTED DESIGN AND ANALYSIS, 2010, : 173 - 180
  • [10] Bayesian D-optimal choice designs for mixtures
    Ruseckaite, Aiste
    Goos, Peter
    Fok, Dennis
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (02) : 363 - 386