Promotion of Proton Conductivity by Encapsulation of Metal-Organic Polyhedra in Metal-Organic Frameworks

被引:8
|
作者
Wang, Bin-Cheng [1 ,2 ,3 ]
Feng, Zhi-Ying [1 ]
Hao, Biao-Biao [1 ]
Zhang, Chen-Xi [1 ,4 ]
Wang, Qing-Lun [2 ,3 ]
机构
[1] Tianjin Univ Sci & Technol, Coll Chem Engn & Mat Sci, Tianjin 300457, Peoples R China
[2] Nankai Univ, Coll Chem, Minist Educ, Tianjin 300071, Peoples R China
[3] Nankai Univ, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[4] Tianjin Key Lab Marine Resources & Chem, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金;
关键词
encapsulation; metal-organic frameworks; metal-organic polyhedral; proton conductivity; LOW-HUMIDITY; MEMBRANES; PORES; OXIDE; MOFS;
D O I
10.1002/chem.202101213
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A Zr-based metal-organic polyhedron (MOP) was self-assembled in a porous MOF host, DUT-68, successfully to synthesize MOP-1@DUT-68. The MOP guest (MOP-1) has a diameter of about 20 angstrom, larger than that of the square windows (pore sizes of similar to 14 angstrom) of DUT-68 but smaller than that of the rhombicuboctahedral cage (27.7 angstrom), which means that the migration and leaching of MOP-1 could be effectively prohibited if MOP-1 is encapsulated in the MOF ' s cavities. The proton conductivity of MOP-1@DUT-68 is 1.14x10(-3) S cm(-1) (at 80 degrees C under 98 % relative humidity), which is three orders of magnitude higher than that of DUT-68. Compared with MOP-1 subset of DUT-68, which was synthesized by impregnation, MOP-1@DUT-68 is more prone to form faster proton-conduction pathways and thus provides higher proton conductivity.
引用
收藏
页码:12137 / 12143
页数:7
相关论文
共 50 条
  • [1] Metal-organic macrocycles, metal-organic polyhedra and metal-organic frameworks
    Prakash, M. Jaya
    Lah, Myoung Soo
    [J]. CHEMICAL COMMUNICATIONS, 2009, (23) : 3326 - 3341
  • [2] Substitution reactions in metal-organic frameworks and metal-organic polyhedra
    Han, Yi
    Li, Jian-Rong
    Xie, Yabo
    Guo, Guangsheng
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5952 - 5981
  • [3] The promotion of proton conductivity by immobilizing molybdovanadophosphoric acids in metal-organic frameworks
    Wang, Fuli
    Liang, Cuiyuan
    Tang, Jiyu
    Zhang, Feng
    Qu, Fengyu
    [J]. NEW JOURNAL OF CHEMISTRY, 2020, 44 (05) : 1912 - 1920
  • [4] Photoresponsive metal-organic polyhedra in metal-organic frameworks: Achieving "real" responsiveness
    Wang, Sheng-Tao
    Tan, Peng
    Weng, Wen-Qiang
    Zheng, Long
    Liu, Xiao-Qin
    Sun, Lin-Bing
    [J]. SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2726 - 2732
  • [5] Designable Guest-Molecule Encapsulation in Metal-Organic Frameworks for Proton Conductivity
    Wang, Feng-Dong
    Wang, Bin-Cheng
    Hao, Biao-Biao
    Zhang, Chen-Xi
    Wang, Qing-Lun
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (21)
  • [6] Encapsulation of metal nanostructures into metal-organic frameworks
    Chen, Liyu
    Luque, Rafael
    Li, Yingwei
    [J]. DALTON TRANSACTIONS, 2018, 47 (11) : 3663 - 3668
  • [7] Intrinsic and extrinsic proton conductivity in metal-organic frameworks
    Tominaka, S.
    Cheetham, A. K.
    [J]. RSC ADVANCES, 2014, 4 (97): : 54382 - 54387
  • [8] Encapsulation of molecules in metal-organic frameworks
    Johnson, Bret
    Smith, Saren
    Moe, Danielle
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [9] Dye encapsulation in metal-organic frameworks
    Johnson, Bret
    Anderson, Katheryne
    Goyke, Eli
    O'Connor, Kristen
    Anderson, Nathan
    Beaulieu, Nathan
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [10] Proton Transport in Metal-Organic Frameworks
    Lim, Dae-Woon
    Kitagawa, Hiroshi
    [J]. CHEMICAL REVIEWS, 2020, 120 (16) : 8416 - 8467