Mixed integer linear programming formulation for flexibility instruments in capacity planning problems

被引:14
|
作者
Tavaghof-Gigloo, Dariush [1 ]
Minner, Stefan [1 ]
Silbermayr, Lena [2 ]
机构
[1] Tech Univ Munich, Sch Management, Arcisstr 21, D-80333 Munich, Germany
[2] Vienna Univ Econ & Business, Dept Informat Syst & Operat, Welthandelspl 1, A-1020 Vienna, Austria
关键词
Aggregate production planning; Shift planning; Overtime account; Flexible maintenance; MILP solvers; INTEGRATED PRODUCTION; MAINTENANCE; MODEL; DECISIONS;
D O I
10.1016/j.cie.2016.04.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a mixed integer linear programming (MILP) approach for an aggregate production planning (APP) problem of an electronics manufacturer. A multi-item, multi-facility, multi-stage capacity planning problem over a finite planning horizon with deterministic demand is considered. We include the flexibility instruments shift planning, overtime account, and flexible maintenance. We present an extensive computational study where the proposed model is applied in a real-world case study and for randomly generated instances. Using a full factorial experimental design we evaluate the cost saving potentials of the flexibility instruments and their combinations. The computational efficiency of the proposed model formulation is investigated by different MILP solvers. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 110
页数:10
相关论文
共 50 条
  • [1] FORMULATION OF INTEGER LINEAR PROGRAMMING PROBLEMS
    POLTEROV.VM
    [J]. MATEKON, 1973, 10 (02): : 36 - 51
  • [2] Mixed Integer Linear Programming Formulation Techniques
    Vielma, Juan Pablo
    [J]. SIAM REVIEW, 2015, 57 (01) : 3 - 57
  • [3] Mixed Integer Linear Programming for Delivery Planning in Joint Replenishment Problems
    Rahmouni, Mouna
    Hennet, Jean-Claude
    Fnaiech, Farhat
    [J]. 2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 665 - 670
  • [4] Mixed Integer Linear Programming Formulation for Aiding Planning Activities in a Complex Pipeline Network
    Stebel, Sergio L.
    Magatao, Suelen N. B.
    Arruda, Lucia V. R.
    Neves-, Flavio, Jr.
    Povoa, Ana P. F. D.
    Relvas, Susana
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (35) : 11417 - 11433
  • [5] Solving conservation planning problems with integer linear programming
    Beyer, Hawthorne L.
    Dujardin, Yann
    Watts, Matthew E.
    Possingham, Hugh P.
    [J]. ECOLOGICAL MODELLING, 2016, 328 : 14 - 22
  • [6] A Mixed Integer Linear Programming Formulation to Artificial Neural Networks
    Akutsu, Tatsuya
    Nagamochi, Hiroshi
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND SYSTEMS (ICISS 2019), 2019, : 215 - 220
  • [7] A mixed integer linear programming formulation of the maximum betweenness problem
    Savic, Aleksandar
    Kratica, Jozef
    Milanovic, Marija
    Dugosija, Djordje
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 206 (03) : 522 - 527
  • [8] Mixed Integer Linear Programming Formulation for the Taxi Sharing Problem
    Ben-Smida, Houssem E.
    Krichen, Saoussen
    Chicano, Francisco
    Alba, Enrique
    [J]. SMART CITIES, SMART-CT 2016, 2016, 9704 : 106 - 117
  • [9] Mixed Integer Linear Programming Formulation for Robust State Estimation
    Chen, Yanbo
    Liu, Feng
    Mei, Shengwei
    Ma, Jin
    [J]. 2014 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT EUROPE), 2014,
  • [10] Concise integer linear programming formulation for clique partitioning problems
    Koshimura, Miyuki
    Watanabe, Emi
    Sakurai, Yuko
    Yokoo, Makoto
    [J]. CONSTRAINTS, 2022, 27 (1-2) : 99 - 115