Bayesian Tensor Factorisation for Bottom-up Hidden Tree Markov Models

被引:4
|
作者
Castellana, Daniele [1 ]
Bacciu, Davide [1 ]
机构
[1] Univ Pisa, Dipartimento Informat, Largo B Pontecorvo 3, Pisa, Italy
关键词
D O I
10.1109/ijcnn.2019.8851851
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bottom-Up Hidden Tree Markov Model is a highly expressive model for tree-structured data. Unfortunately, it cannot be used in practice due to the intractable size of its state-transition matrix. We propose a new approximation which lies on the Tucker factorisation of tensors. The probabilistic interpretation of such approximation allows us to define a new probabilistic model for tree-structured data. Hence, we define the new approximated model and we derive its learning algorithm. Then, we empirically assess the effective power of the new model evaluating it on two different tasks. In both cases, our model outperforms the other approximated model known in the literature.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] BOTTOM-UP TREE ACCEPTORS
    HEMERIK, C
    KATOEN, JP
    [J]. SCIENCE OF COMPUTER PROGRAMMING, 1989, 13 (01) : 51 - 72
  • [2] Bottom-up tree acceptors
    [J]. Hemerik, C., 1600, (13):
  • [3] Bayesian mixtures of Hidden Tree Markov Models for structured data clustering
    Bacciu, Davide
    Castellana, Daniele
    [J]. NEUROCOMPUTING, 2019, 342 : 49 - 59
  • [4] Bottom-Up derivatives of tree expressions
    Attou, Samira
    Mignot, Ludovic
    Ziadi, Djelloul
    [J]. RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2021, 55
  • [5] ALTERNATING BOTTOM-UP TREE RECOGNIZERS
    SALOMAA, K
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1986, 214 : 158 - 171
  • [6] Transformations Between Different Models of Unranked Bottom-Up Tree Automata
    Piao, Xiaoxue
    Salomaa, Kai
    [J]. FUNDAMENTA INFORMATICAE, 2011, 109 (04) : 405 - 424
  • [7] BAYESIAN HIDDEN MARKOV TREE MODELS FOR CLUSTERING GENES WITH SHARED EVOLUTIONARY HISTORY
    Li, Yang
    Ning, Shaoyang
    Calv, Sarah E.
    Mootha, Vamsi K.
    Liu, Jun S.
    [J]. ANNALS OF APPLIED STATISTICS, 2019, 13 (01): : 606 - 637
  • [8] Bayesian classification of Hidden Markov Models
    Kehagias, A
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (05) : 25 - 43
  • [9] Bayesian Sensing Hidden Markov Models
    Saon, George
    Chien, Jen-Tzung
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01): : 43 - 54
  • [10] On the Realization of Hidden Markov Models and Tensor Decomposition
    Ohta, Yoshito
    [J]. IFAC PAPERSONLINE, 2021, 54 (09): : 725 - 730