Crystal structure, thermodynamic properties, and paragenesis of bukovskyite, Fe2(AsO4)(SO4)(OH)•9H2O

被引:25
|
作者
Majzlan, Juraj [1 ]
Lazic, Biljana [2 ]
Armbruster, Thomas [2 ]
Johnson, Michel B. [3 ,4 ]
White, Mary Anne [3 ,4 ]
Fisher, Robert A. [5 ]
Plasil, Jakub [6 ]
Loun, Jan [6 ]
Skoda, Radek [6 ]
Novak, Milan [6 ]
机构
[1] Univ Jena, Inst Geosci, D-07749 Jena, Germany
[2] Univ Bern, Inst Geol Sci, CH-31012 Bern, Switzerland
[3] Dalhousie Univ, Inst Mat Res, Halifax, NS B3H 4R2, Canada
[4] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[5] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, MSD, Berkeley, CA 94720 USA
[6] Masaryk Univ, Fac Sci, Dept Geol Sci, CZ-61137 Brno, Czech Republic
基金
加拿大创新基金会;
关键词
Bukovskyite; Crystal structure; Thermodynamics; Paragenesis; MINERAL FORMATION; HEAT-CAPACITY; PIT-LAKE; ACID; ADSORPTION; COQUIMBITE; ORE;
D O I
10.2465/jmps.110930
中图分类号
P57 [矿物学];
学科分类号
070901 ;
摘要
Bukovskyite is a relatively rare secondary ferric arsenate-sulfate. At the type locality near the municipality of Kutna Hora (Czech Republic), it is the main secondary mineral in the medieval dumps, where it occurs in enormous amounts and forms nodules of prodigious dimensions. We investigated the mineral bukovskyite and the type locality in detail to understand the abundance of the mineral at this locality. The crystal structure of bukovskyite was solved for bukovskyite crystals from Grossvoigtsberg (Germany) and found to be of the space group P (I) over bar with a final R factor of 5.08% from 2403 reflections. The lattice parameters at room temperature are a = 7.549(1) angstrom, b = 10.305(1) angstrom, c = 10.914(2) angstrom, alpha = 115.136(3)degrees, beta = 99.798(3)degrees, and gamma = 92.864(3)degrees. The structure consists of octahedral-tetrahedral Fe-arsenate chains. Sulfate tetrahedra are bonded to the chains and free H2O molecules via a complicated network of hydrogen bonds. Calorimetric measurements (acid-solution calorimetry at T = 298.15 K and relaxation calorimetry yielded heat capacities from T = 0.4 K to 300 K) gave an enthalpy of formation of -4742.4 +/- 3.8 kJ.mol(-1) and standard entropy of 615.2 +/- 6.9 J.mol(-l).K-1. A combination of these values gives a Gibbs free energy of formation of -3968.9 +/- 4.3 kJ.mol(-1) and aqueous solubility product (log K) of -30.627. Bukovskyite is metastable with respect to scorodite; if scorodite is not considered in the thermodynamic calculations, a stability field of bukovskyite appears at low pH and high sulfate and arsenate activity. Field observations showed that bukovskyite occurs in dumps where the space between the rock fragments is filled by clays. Bukovskyite crystallizes from Fe-As-S-rich gels that replace Si-Al gels. The exact mechanisms that control the entire process are not clear but will be the subject of further studies. We presume that the clays play an important role in creating microenvironments where the activity of the components needed for bukovskyite crystallization remains high for a long time. Bukovskyite is then an intermediate step in the conversion of the unstable gels to the stable assemblage of scorodite and iron sulfates.
引用
收藏
页码:133 / 148
页数:16
相关论文
共 50 条
  • [1] Thermodynamic properties of kornelite (Fe2(SO4)3•∼7.75H2O) and paracoquimbite (Fe2(SO4)3•9H2O)
    Ackermann, S.
    Lazic, B.
    Armbruster, T.
    Doyle, S.
    Grevel, K. -D.
    Majzlan, J.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A9 - A9
  • [2] Thermodynamic and crystallographic properties of kornelite [Fe2(SO4)3•∼7.75H2O] and paracoquimbite [Fe2(SO4)3•9H2O]
    Ackermann, Sonia
    Lazic, Biljana
    Armbruster, Thomas
    Doyle, Stephen
    Grevel, Klaus-Dieter
    Majzlan, Juraj
    [J]. AMERICAN MINERALOGIST, 2009, 94 (11-12) : 1620 - 1628
  • [3] CRYSTAL SYMMETRY AND UNIT-CELL OF BUKOVSKYITE, FE-2(3+) (ASO4)(SO4)(OH).7H2O
    JOHAN, Z
    [J]. NEUES JAHRBUCH FUR MINERALOGIE-MONATSHEFTE, 1986, (10): : 445 - 451
  • [4] A Raman spectroscopic study of bukovskyite Fe2(AsO4)(SO4)(OH)• 7H2O, a mineral phase with a significant role in arsenic migration
    Loun, Jan
    Cejka, Jiri
    Sejkora, Jiri
    Plasil, Jakub
    Novak, Milan
    Frost, Ray L.
    Palmer, Sara J.
    Keeffe, Eloise C.
    [J]. JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (07) : 1596 - 1600
  • [5] The molecular structure of the mineral sarmientite Fe2(AsO4,SO4)2(OH)6•5H2O - Implications for arsenic accumulation and removal
    Frost, Ray L.
    Palmer, Sara J.
    Xi, Yunfei
    [J]. JOURNAL OF MOLECULAR STRUCTURE, 2011, 1004 (1-3) : 88 - 93
  • [6] Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kankite
    Majzlan, Juraj
    Palatinus, Lukas
    Plasil, Jakub
    [J]. EUROPEAN JOURNAL OF MINERALOGY, 2016, 28 (01) : 63 - 70
  • [7] Crystal structure of Fe2(AsO4)(HAsO4)(OH)(H2O)3, a dehydration product of kaňkite
    Institute of Geosciences, Friedrich-Schiller University, Burgweg 11, Jena
    07749, Germany
    不详
    18221, Czech Republic
    [J]. Eur. J. Mineral., 1600, 1 (63-70):
  • [8] Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5
    Majzlan, Juraj
    Navrotsky, Alexandra
    McCleskey, R. Blaine
    Alpers, Charles N.
    [J]. EUROPEAN JOURNAL OF MINERALOGY, 2006, 18 (02) : 175 - 186
  • [9] Cu10(AsO4)4(SO4)(OH)6•8H2O
    不详
    [J]. CANADIAN MINERALOGIST, 2004, 42 : 1912 - 1912