SADDLE NODE SCALING ON APPROACH TO DISLOCATION NUCLEATION

被引:0
|
作者
Hasan, A. [1 ]
Maloney, C. E. [1 ]
机构
[1] Carnegie Mellon Univ, Dept Civil & Environm Engn, Pittsburgh, PA 15213 USA
关键词
dislocation; nucleation; bifurcation; instability; indentation; CRACK-TIP; MULTISCALE SIMULATION; ATOMISTIC SIMULATION; NANOINDENTATION; PLASTICITY; MECHANISMS; DEFORMATION; CRITERION; CLEAVAGE; FRACTURE;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the process of dislocation nucleation in a perfect 2D hexagonal crystal under nano-indentation loading in a numerical model using energy minimization techniques and analysis of the energy eigenmodes. The nucleation event takes the form of a saddle-node catastrophe and is governed by associated scaling laws. In particular, on approach to nucleation, a single energy eigenmode descends through the spectrum and its eigenvalue vanishes as the square root of the distance to the nucleation point. The velocity of the system shows the same scaling behavior, and its normal-mode decomposition demonstrates that it is dominated by the critical mode responsible for nucleation.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 50 条
  • [1] Scaling law in saddle-node bifurcations for one-dimensional maps: a complex variable approach
    Duarte, Jorge
    Januario, Cristina
    Martins, Nuno
    Sardanyes, Josep
    NONLINEAR DYNAMICS, 2012, 67 (01) : 541 - 547
  • [2] Scaling law in saddle-node bifurcations for one-dimensional maps: a complex variable approach
    Jorge Duarte
    Cristina Januário
    Nuno Martins
    Josep Sardanyés
    Nonlinear Dynamics, 2012, 67 : 541 - 547
  • [3] Scaling properties of saddle-node bifurcations on fractal basin boundaries
    Breban, R
    Nusse, HE
    Ott, E
    PHYSICAL REVIEW E, 2003, 68 (06) : 662131 - 662131
  • [5] Dislocation nucleation at a surface step by a multiscale approach
    Li, CZ
    Segall, D
    Xu, GS
    Fundamentals of Nanoindentation and Nanotribology III, 2005, 841 : 305 - 310
  • [6] Universal scaling laws for homogeneous dislocation nucleation during nano-indentation
    Garg, Akanksha
    Maloney, Craig E.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2016, 95 : 742 - 754
  • [7] Lack of predictability in dynamical systems with drift: scaling of indeterminate saddle-node bifurcations
    Breban, R
    Nusse, HE
    Ott, E
    PHYSICS LETTERS A, 2003, 319 (1-2) : 79 - 84
  • [8] General scaling law in the saddle-node bifurcation:: a complex phase space study
    Fontich, Ernest
    Sardanyes, Josep
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (01)
  • [9] Dynamic hysteresis at a noisy saddle node shows power-law scaling but nonuniversal exponent
    Kundu, Satyaki
    Patel, Ranjan Kumar
    Middey, Srimanta
    Bansal, Bhavtosh
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [10] Dislocation propagation versus dislocation nucleation
    E. Ma
    T. D. Shen
    X. L. Wu
    Nature Materials, 2006, 5 : 841 - 841