Hierarchical Linear Mixed Model for Poverty Analysis in Indonesia

被引:2
|
作者
Rachmawati, Ro'fah Nur [1 ]
Pusponegoro, Novi Hidayat [2 ]
机构
[1] Bina Nusantara Univ, Stat Dept, Kebun Jeruk Raya 27, Jakarta 11530, Indonesia
[2] Sekolah Tinggi Ilmu Stat, Stat Dept, Jl Otista 64C, Jakarta 13330, Indonesia
关键词
Longitudinal data; R Covariance structure; GLMM; PROC MIXED; Growth curves; LONGITUDINAL DATA; GROWTH;
D O I
10.1016/j.procs.2017.10.027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hierarchical Linear Mixed Model (HLMM) is an extension of Linear Mixed Model with hierarchical levels of observation. HLMM allows researchers to model different types of covariance structure to describe data properly while in classical linear model the covariance structure defines in constant variance and correlation that hardly applicable for longitudinal data. This paper describes two levels HLMM which represents a single growth curves model. Level-1 presents growth shape to capture within-subject effect and level-2 presents growth parameters that characterized between-subject differences. We model the covariance structure of level-1 random effect to excavate individual growth performance and applied to longitudinal data from poverty data of 34 provinces in Indonesia. Different types of covariance structures are modeled using PROC MIXED in SAS system, produce that AR(1) is the alternative of constant covariance structure and ARH(1) as an alternative for non-constant variance structure based on-2RLL, AIC and BIC criteria. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:182 / 189
页数:8
相关论文
共 50 条
  • [1] Using SAS PROC MIXED to demystify the hierarchical linear model
    Wang, JJ
    [J]. JOURNAL OF EXPERIMENTAL EDUCATION, 1997, 66 (01): : 84 - 93
  • [2] Item analysis by the hierarchical generalized linear model
    Kamata, A
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2001, 38 (01) : 79 - 93
  • [3] MULTILEVEL ANALYSIS - THE HIERARCHICAL LINEAR-MODEL
    RINGDAL, K
    [J]. TIDSSKRIFT FOR SAMFUNNSFORSKNING, 1991, 32 (06): : 521 - 540
  • [4] INFLUENCE ANALYSIS IN THE LINEAR MIXED MODEL
    Turkan, Semra
    Toktamis, Oniz
    [J]. PAKISTAN JOURNAL OF STATISTICS, 2012, 28 (03): : 341 - 349
  • [5] Griddy-Gibbs sampler in a Bayesian hierarchical mixed linear model
    Gönen, M
    [J]. MINING AND MODELING MASSIVE DATA SETS IN SCIENCE, ENGINEERING, AND BUSINESS WITH A SUBTHEME IN ENVIRONMENTAL STATISTICS, 1997, 29 (01): : 263 - 266
  • [6] An efficient hierarchical generalized linear mixed model for pathway analysis of genome-wide association studies
    Wang, Lily
    Jia, Peilin
    Wolfinger, Russell D.
    Chen, Xi
    Grayson, Britney L.
    Aune, Thomas M.
    Zhao, Zhongming
    [J]. BIOINFORMATICS, 2011, 27 (05) : 686 - 692
  • [7] The linear mixed model and the hierarchical Ornstein-Uhlenbeck model: Some equivalences and differences
    Oravecz, Zita
    Tuerlinckx, Francis
    [J]. BRITISH JOURNAL OF MATHEMATICAL & STATISTICAL PSYCHOLOGY, 2011, 64 (01): : 134 - 160
  • [8] Analysis of longitudinal data using the hierarchical linear model
    Snijders, T
    [J]. QUALITY & QUANTITY, 1996, 30 (04) : 405 - 426
  • [9] A non-linear hierarchical mixed model to describe tree height growth
    Nothdurft, Arne
    Kublin, Edgar
    Lappi, Juha
    [J]. EUROPEAN JOURNAL OF FOREST RESEARCH, 2006, 125 (03) : 281 - 289
  • [10] A non-linear hierarchical mixed model to describe tree height growth
    Arne Nothdurft
    Edgar Kublin
    Juha Lappi
    [J]. European Journal of Forest Research, 2006, 125 : 281 - 289