Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain

被引:159
|
作者
Bulchandani, Vir B. [1 ]
Vasseur, Romain [1 ,2 ,3 ]
Karrasch, Christoph [4 ,5 ]
Moore, Joel E. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
关键词
MATRIX RENORMALIZATION-GROUP; ENERGY; SYSTEMS; BOUNDS; LIMIT;
D O I
10.1103/PhysRevB.97.045407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum integrable systems, such as the interacting Bose gas in one dimension and the XXZ quantum spin chain, have an extensive number of local conserved quantities that endow them with exotic thermalization and transport properties. We discuss recently introduced hydrodynamic approaches for such integrable systems from the viewpoint of kinetic theory and extend the previous works by proposing a numerical scheme to solve the hydrodynamic equations for finite times and arbitrary locally equilibrated initial conditions. We then discuss how such methods can be applied to describe nonequilibrium steady states involving ballistic heat and spin currents. In particular, we show that the spin Drude weight in the XXZ chain, previously accessible only by rigorous techniques of limited scope or controversial thermodynamic Bethe ansatz arguments, may be evaluated from hydrodynamics in very good agreement with density-matrix renormalization group calculations.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Nonlinear Fluctuating Hydrodynamics for the Classical XXZ Spin Chain
    Avijit Das
    Kedar Damle
    Abhishek Dhar
    David A. Huse
    Manas Kulkarni
    Christian B. Mendl
    Herbert Spohn
    Journal of Statistical Physics, 2020, 180 : 238 - 262
  • [2] The spin Drude weight of the XXZ chain and generalized hydrodynamics
    Urichuk, Andrew
    Oez, Yahya
    Kluemper, Andreas
    Sirker, Jesko
    SCIPOST PHYSICS, 2019, 6 (01):
  • [3] Nonlinear Fluctuating Hydrodynamics for the Classical XXZ Spin Chain
    Das, Avijit
    Damle, Kedar
    Dhar, Abhishek
    Huse, David A.
    Kulkarni, Manas
    Mendl, Christian B.
    Spohn, Herbert
    JOURNAL OF STATISTICAL PHYSICS, 2020, 180 (1-6) : 238 - 262
  • [4] Origin of the singular Bethe ansatz solutions for the Heisenberg XXZ spin chain
    Noh, JD
    Lee, DS
    Kim, D
    PHYSICA A, 2000, 287 (1-2): : 167 - 176
  • [5] The XXZ spin chain at Δ=-1/2:: Bethe roots, symmetric functions, and determinants
    de Gier, J
    Batchelor, MT
    Nienhuis, B
    Mitra, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) : 4135 - 4146
  • [6] Spin Transport in the XXZ Chain at Finite Temperature and Momentum
    Steinigeweg, Robin
    Brenig, Wolfram
    PHYSICAL REVIEW LETTERS, 2011, 107 (25)
  • [7] Phantom Bethe roots in the integrable open spin-1/2 XXZ chain
    Zhang, Xin
    Klumper, Andreas
    Popkov, Vladislav
    PHYSICAL REVIEW B, 2021, 103 (11)
  • [8] Functional Relations and Bethe Ansatz for the XXZ Chain
    Rafael I. Nepomechie
    Journal of Statistical Physics, 2003, 111 : 1363 - 1376
  • [9] Bethe ansatz and boundary energy of the open spin-1-2 XXZ chain
    Murgan, Rajan
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1237 - 1242
  • [10] Bethe ansatz of the open spin-s XXZ chain with nondiagonal boundary terms
    Murgan, Rajan
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (04):