Switching Control for Euler-Lagrange Dynamics: An Incremental Stability Approach

被引:0
|
作者
Dey, Bhabani Shankar [1 ]
Kar, Indra Narayan [1 ]
机构
[1] Indian Inst Technol Delhi, Delhi, India
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 01期
关键词
Incremental Stability; Contraction Analysis; Euler-Lagrange Systems; Filipov Systems; CONTRACTION ANALYSIS; SYSTEMS; REGULARIZATION; TRACKING;
D O I
10.1016/j.ifaco1.2022.04.091
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper discuses the stabilization problem in an Euler-Lagrange dynamics in the incremental stability framework. The work proposes the analysis in bimodal switched domain. The switching here is introduced intentionally in terms of control action to enhance robustness. In such setting, we derive sufficient conditions using matrix measure to show incremental stability in each mode and overall switched system. The proposition uses contraction theory approach to establish incremental stability. In this article, the selection of switching surface is as per the desired characteristics to be achieved. The objective is to minimise the stabilization error irrespective of the initial conditions, which is an inherent advantage of using Contraction theory. The adoption of this technique simplifies the analysis compared to the conventional framework. The efficacy of artefact is well supplemented by the simulation results. Copyright (C) 2022 The Authors.
引用
收藏
页码:555 / 560
页数:6
相关论文
共 50 条
  • [1] Intrinsic Euler-Lagrange Dynamics and Control Analysis of the Ballbot
    Satici, Aykut C.
    Ruggiero, Fabio
    Lippiello, Vincenzo
    Siciliano, Bruno
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 5685 - 5690
  • [2] Coordination control of networked Euler-Lagrange systems with possible switching topology
    Min, Hai-Bo
    Liu, Zhi-Guo
    Liu, Yuan
    Wang, Shi-Cheng
    Yang, Yan-Li
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2013, 39 (07): : 1003 - 1010
  • [3] Cavitation research with computational fluid dynamics: From Euler-Euler to Euler-Lagrange approach
    Ji, Bin
    Wang, Zi-yang
    Cheng, Huai-yu
    Bensow, Rickard E.
    [J]. JOURNAL OF HYDRODYNAMICS, 2024, 36 (01) : 1 - 23
  • [4] Cavitation research with computational fluid dynamics: From Euler-Euler to Euler-Lagrange approach
    Bin Ji
    Zi-yang Wang
    Huai-yu Cheng
    Rickard E. Bensow
    [J]. Journal of Hydrodynamics, 2024, 36 : 1 - 23
  • [5] Linear control of Euler-Lagrange systems
    Alvarez-Ramirez, J
    Cervantes, I
    [J]. PHYSICS LETTERS A, 2000, 278 (1-2) : 77 - 87
  • [6] ON THE STABILITY OF THE EULER-LAGRANGE FUNCTIONAL-EQUATION
    RASSIAS, JM
    [J]. DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1992, 45 (06): : 17 - 20
  • [7] Reconfigurable Synchronization Control of Networked Euler-Lagrange Systems with Switching Communication Topologies
    Mehrabian, A. R.
    Khorasani, K.
    Tafazoli, S.
    [J]. ASIAN JOURNAL OF CONTROL, 2014, 16 (03) : 830 - 844
  • [8] Multi-time Euler-Lagrange dynamics
    Udriste, Constantin
    Tevy, Ionel
    [J]. PROCEEDINGS OF THE 7TH WSEAS INTERNATIONAL CONFERENCE ON SYSTEMS THEORY AND SCIENTIFIC COMPUTATION (ISTACS'07), 2007, : 66 - +
  • [9] Cooperative Tracking Control of Euler-Lagrange Systems with Switching Communication Network Topologies
    Mehrabian, A. R.
    Tafazoli, S.
    Khorasani, K.
    [J]. 2010 IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT MECHATRONICS (AIM), 2010,
  • [10] Trajectory Tracking Control of Uncertain Euler-Lagrange Systems: A Robust Control Approach
    He, Xingxiu
    Lu, Maobin
    Deng, Fang
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE-ROBIO 2021), 2021, : 1855 - 1860