Supremizer stabilization of POD-Galerkin approximation of parametrized steady incompressible Navier-Stokes equations

被引:172
|
作者
Ballarin, Francesco [1 ]
Manzoni, Andrea [2 ]
Quarteroni, Alfio [1 ,3 ]
Rozza, Gianluigi [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX Modeling & Sci Comp, I-20133 Milan, Italy
[2] Scuola Int Super Studi Avanzati, SISSA MathLab, I-34136 Trieste, Italy
[3] Ecole Polytech Fed Lausanne, CMCS Modelling & Sci Comp, CH-1015 Lausanne, Switzerland
关键词
proper orthogonal decomposition; reduced basis method; pressure stabilization; equivalent inf-sup condition; parametrized Navier-Stokes equations; PROPER ORTHOGONAL DECOMPOSITION; NONLINEAR MODEL-REDUCTION; REDUCED BASIS METHOD; STABILITY; DISCRETIZATION; FRAMEWORK; DYNAMICS; FLOWS;
D O I
10.1002/nme.4772
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we present a stable proper orthogonal decomposition-Galerkin approximation for parametrized steady incompressible Navier-Stokes equations with low Reynolds number. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:1136 / 1161
页数:26
相关论文
共 50 条
  • [1] POD-Galerkin method for finite volume approximation of Navier-Stokes and RANS equations
    Lorenzi, Stefano
    Cammi, Antonio
    Luzzi, Lelio
    Rozza, Gianluigi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 311 : 151 - 179
  • [2] Stability properties of POD-Galerkin approximations for the compressible Navier-Stokes equations
    Iollo, A
    Lanteri, S
    Désidéri, JA
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2000, 13 (06) : 377 - 396
  • [3] Finite volume POD-Galerkin stabilised reduced order methods for the parametrised incompressible Navier-Stokes equations
    Stabile, Giovanni
    Rozza, Gianluigi
    COMPUTERS & FLUIDS, 2018, 173 : 273 - 284
  • [4] A novel stabilized Galerkin meshless method for steady incompressible Navier-Stokes equations
    Hu, Guanghui
    Li, Ruo
    Zhang, Xiaohua
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 133 : 95 - 106
  • [5] On a relaxation approximation of the incompressible Navier-Stokes equations
    Brenier, Y
    Natalini, R
    Puel, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (04) : 1021 - 1028
  • [6] A discontinuous Galerkin method for the incompressible Navier-Stokes equations
    Karakashian, O
    Katsaounis, T
    DISCONTINUOUS GALERKIN METHODS: THEORY, COMPUTATION AND APPLICATIONS, 2000, 11 : 157 - 166
  • [7] A POD-Galerkin reduced order model for the Navier-Stokes equations in stream function-vorticity formulation
    Girfoglio, Michele
    Quaini, Annalisa
    Rozza, Gianluigi
    COMPUTERS & FLUIDS, 2022, 244
  • [8] Comparative Analysis of Obstacle Approximation Strategies for the Steady Incompressible Navier-Stokes Equations
    Krzyzanowski, Piotr
    Malikova, Sadokat
    Mucha, Piotr Boguslaw
    Piasecki, Tomasz
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (02):
  • [10] STEADY AND UNSTEADY SOLUTIONS OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    ROGERS, SE
    KWAK, D
    KIRIS, C
    AIAA JOURNAL, 1991, 29 (04) : 603 - 610