A note on parameter estimation for misspecified regression models with heteroskedastic errors

被引:3
|
作者
Long, James P. [1 ]
机构
[1] Dept Stat, 3143 TAMU, College Stn, TX 77843 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2017年 / 11卷 / 01期
关键词
Heteroskedasticity; model misspecification; approximate models; weighted least squares; sandwich estimators; astrostatistics; LEAST-SQUARES ESTIMATION; SKY; CAMERA;
D O I
10.1214/17-EJS1255
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Misspecified models often provide useful information about the true data generating distribution. For example, if y is a non-linear function of x the least squares estimator (beta) over cap is an estimate of beta, the slope of the best linear approximation to the non-linear function. Motivated by problems in astronomy, we study how to incorporate observation measurement error variances into fitting parameters of misspecified models. Our asymptotic theory focuses on the particular case of linear regression where often weighted least squares procedures are used to account for heteroskedasticity. We find that when the response is a non-linear function of the independent variable, the standard procedure of weighting by the inverse of the observation variances can be counter-productive. In particular, ordinary least squares may have lower asymptotic variance. We construct an adaptive estimator which has lower asymptotic variance than either OLS or standard WLS. We demonstrate our theory in a small simulation and apply these ideas to the problem of estimating the period of a periodic function using a sinusoidal model.
引用
收藏
页码:1464 / 1490
页数:27
相关论文
共 50 条
  • [1] Ridge estimation in linear models with heteroskedastic errors
    Alkhamisi, M. A.
    [J]. SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2012, 74 (02): : 302 - 314
  • [2] Ridge estimation in linear models with heteroskedastic errors
    M. A. Alkhamisi
    [J]. Sankhya B, 2012, 74 (2) : 302 - 314
  • [3] SEMIPARAMETRIC EFFICIENCY FOR CENSORED LINEAR REGRESSION MODELS WITH HETEROSKEDASTIC ERRORS
    Chen, Tao
    [J]. ECONOMETRIC THEORY, 2018, 34 (01) : 228 - 245
  • [4] Debiased and thresholded ridge regression for linear models with heteroskedastic and correlated errors
    Zhang, Yunyi
    Politis, Dimitris N.
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2023, 85 (02) : 327 - 355
  • [5] Nonparametric estimation in heteroskedastic regression
    Akritas, MG
    [J]. STATISTICS & PROBABILITY LETTERS, 1996, 28 (01) : 23 - 31
  • [6] PARAMETER-ESTIMATION IN REGRESSION-MODELS WITH ERRORS IN THE VARIABLES AND AUTOCORRELATED DISTURBANCES
    DAGENAIS, MG
    [J]. JOURNAL OF ECONOMETRICS, 1994, 64 (1-2) : 145 - 163
  • [7] Model selection for regression with heteroskedastic and autocorrelated errors
    Mao, Guangyu
    [J]. ECONOMICS LETTERS, 2013, 118 (03) : 497 - 501
  • [8] Working with Misspecified Regression Models
    Berk, Richard
    Brown, Lawrence
    Buja, Andreas
    George, Edward
    Zhao, Linda
    [J]. JOURNAL OF QUANTITATIVE CRIMINOLOGY, 2018, 34 (03) : 633 - 655
  • [9] Working with Misspecified Regression Models
    Richard Berk
    Lawrence Brown
    Andreas Buja
    Edward George
    Linda Zhao
    [J]. Journal of Quantitative Criminology, 2018, 34 : 633 - 655
  • [10] Estimation of VMT using heteroskedastic log-linear regression models
    Mahmud, Asif
    Hamilton, Ian
    Gayah, Vikash V.
    Porter, Richard J.
    [J]. TRANSPORTATION LETTERS-THE INTERNATIONAL JOURNAL OF TRANSPORTATION RESEARCH, 2024, 16 (04): : 320 - 329