Consistency and normality of Huber-Dutter estimators for partial linear model

被引:9
|
作者
Tong XingWei [1 ]
Cui HengJian [1 ]
Yu Peng [2 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
[2] Natl Geomat Ctr China, Beijing 100873, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2008年 / 51卷 / 10期
基金
中国国家自然科学基金;
关键词
Huber-Dutter estimator; partial linear model; B-spline function;
D O I
10.1007/s11425-008-0028-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For partial linear model Y = X-tau beta(0) + g(0)(T) + epsilon with unknown beta(0)is an element of R-d and an unknown smooth function g(0), this paper considers the Huber-Dutter estimators of beta(0), scale sigma for the errors and the function g(0) approximated by the smoothing B-spline functions, respectively. Under some regularity conditions, the Huber-Dutter estimators of beta(0) and sigma are shown to be asymptotically normal with the rate of convergence n(-1/2) and the B-spline Huber-Dutter estimator of g(0) achieves the optimal rate of convergence in nonparametric regression. A simulation study and two examples demonstrate that the Huber-Dutter estimator of beta(0) is competitive with its M-estimator without scale parameter and the ordinary least square estimator.
引用
收藏
页码:1831 / 1842
页数:12
相关论文
共 50 条