A method for proving Ramanujan's series for 1/π

被引:0
|
作者
Guillera, Jesus [1 ]
机构
[1] Univ Zaragoza, Dept Math, Zaragoza 50009, Spain
来源
RAMANUJAN JOURNAL | 2020年 / 52卷 / 02期
关键词
Hypergeometric series; Ramanujan series for 1/pi; Legendre's relation; FORMULAS;
D O I
10.1007/s11139-018-0113-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a famous paper of 1914 Ramanujan gave a list of 17 extraordinary formulas for the number 1/pi. In this paper we explain a general method to prove them, based on some ideas of James Wan and some of our own ideas.
引用
收藏
页码:421 / 431
页数:11
相关论文
共 50 条
  • [1] Further WZ-based methods for proving and generalizing Ramanujan's series
    Campbell, John M.
    Levrie, Paul
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2023, 29 (03) : 366 - 376
  • [2] Ramanujan's Series for 1/π: A Survey
    Baruah, Nayandeep Deka
    Berndt, Bruce C.
    Chan, Heng Huat
    AMERICAN MATHEMATICAL MONTHLY, 2009, 116 (07): : 567 - 587
  • [3] Rational analogues of Ramanujan's series for 1/π
    Chan, Heng Huat
    Cooper, Shaun
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 361 - 383
  • [4] A Generalisation of Ramanujan’s (back of the envelope) Method for Divergent Series
    Burchell, Patrick J.
    arXiv, 2023,
  • [5] Level 10 analogues of Ramanujan's series for 1/π
    Cooper, Shaun
    JOURNAL OF THE RAMANUJAN MATHEMATICAL SOCIETY, 2012, 27 (01) : 59 - 76
  • [6] ON RAMANUJAN'S EISENSTEIN SERIES IDENTITIES
    Anusha, Thippesha
    Bhuvan, Eshwar Nalige
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2022, 111 (125): : 69 - 76
  • [7] Ramanujan's Eisenstein series and new hypergeometric-like series for 1/π2
    Baruah, Nayandeep Deka
    Berndt, Bruce C.
    JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 135 - 153
  • [8] A new An extension of Ramanujan's 1ψ1 summation with applications to multilateral An series
    Milne, SC
    Schlosser, M
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2002, 32 (02) : 759 - 792
  • [9] Generalizations of Baruah and Berndt?s Ramanujan-type series for 1/?
    Campbell, John M.
    NOTE DI MATEMATICA, 2022, 42 (02): : 75 - 92
  • [10] Ramanujan-Sato series for 1/?
    Huber, T. I. M.
    Schultz, D. A. N. I. E. L.
    Ye, D. O. N. G. X., I
    ACTA ARITHMETICA, 2023, 207 (02) : 121 - 160