Parton distribution functions beyond leading twist from lattice QCD: The hL (x) case

被引:19
|
作者
Bhattacharya, Shohini [1 ]
Cichy, Krzysztof [2 ]
Constantinou, Martha [1 ]
Metz, Andreas [1 ]
Scapellato, Aurora [1 ]
Steffens, Fernanda [3 ]
机构
[1] Temple Univ, Dept Phys, Philadelphia, PA 19122 USA
[2] Adam Mickiewicz Univ, Fac Phys, Ul Uniwersytetu Poznanskiego 2, PL-61614 Poznan, Poland
[3] Rheinische Friedrich Wilhelms Univ Bonn, Inst Strahlen & Kernphys, Nussallee 14-16, D-53115 Bonn, Germany
基金
美国国家科学基金会;
关键词
SUM-RULES; NONPERTURBATIVE RENORMALIZATION; POLARIZED PROTON; SPIN; VIOLATION;
D O I
10.1103/PhysRevD.104.114510
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report the fast-ever calculation of the isovector flavor combination of the chiral-odd twist-3 parton distribution h(L) (x) for the proton from lattice QCD. We employ gauge configurations with two degenerate light, a strange and a charm quark (N-f = 2 + 1 + 1) of maximally twisted mass fermions with a clover improvement. The lattice has a spatial extent of 3 fm and lattice spacing of 0.093 fm. The values of the quark masses lead to a pion mass of 260 MeV. We use a source-sink time separation of 1.12 fm to control contamination from excited states. Our calculation is based on the quasi-distribution approach, with three values for the proton momentum: 0.83, 1.25, and 1.67 GeV. The lattice data are renormalized nonperturbatively using the RI' scheme, and the final result for h(L) (x) is presented in the (MS) over bar scheme at the scale of 2 GeV. Furthermore, we compute in the same setup the transversity distribution, h(1) (x), which allows us, in particular, to compare h(L) (x) to its Wandzura-Wilczek approximation. We also combine results for the isovector and isoscalar flavor combinations to disentangle the individual quark contributions for h(1) (x) and h(L) (x), and address the Wandzura-Wilczek approximation in that case as well.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The continuum and leading twist limits of parton distribution functions in lattice QCD
    Karpie, Joseph
    Orginos, Kostas
    Radyushkin, Anatoly
    Zafeiropoulos, Savvas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
  • [2] The continuum and leading twist limits of parton distribution functions in lattice QCD
    Joseph Karpie
    Kostas Orginos
    Anatoly Radyushkin
    Savvas Zafeiropoulos
    [J]. Journal of High Energy Physics, 2021
  • [3] Parton Distribution Functions from Lattice QCD
    Alexandrou, Constantia
    [J]. FEW-BODY SYSTEMS, 2016, 57 (08) : 621 - 626
  • [4] Parton Distribution Functions from Lattice QCD
    Constantia Alexandrou
    [J]. Few-Body Systems, 2016, 57 : 621 - 626
  • [5] Parton distribution functions in the pion from lattice QCD
    Detmold, W
    Melnitchouk, W
    Thomas, AW
    [J]. PHYSICAL REVIEW D, 2003, 68 (03)
  • [6] Pion parton distribution functions from lattice QCD
    Wetzorke, I
    Guagnelli, M
    Jansen, K
    Palombi, F
    Petronzio, R
    Shindler, A
    [J]. NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2004, 129 : 281 - 283
  • [7] Transversity parton distribution functions from lattice QCD
    Alexandrou, Constantia
    Cichy, Krzysztof
    Constantinou, Martha
    Jansen, Karl
    Scapellato, Aurora
    Steffens, Fernanda
    [J]. PHYSICAL REVIEW D, 2018, 98 (09)
  • [8] Extracting parton distribution functions from lattice QCD calculations
    Ma, Yan-Qing
    Qiu, Jian-Wei
    [J]. PHYSICAL REVIEW D, 2018, 98 (07)
  • [9] Extraction of Next-to-Next-to-Leading-Order Parton Distribution Functions from Lattice QCD Calculations
    Li, Zheng-Yang
    Ma, Yan-Qing
    Qiu, Jian-Wei
    [J]. PHYSICAL REVIEW LETTERS, 2021, 126 (07)
  • [10] Gluon Quasi-Parton-Distribution Functions from Lattice QCD
    Fan, Zhou-You
    Yang, Yi-Bo
    Anthony, Adam
    Lin, Huey-Wen
    Liu, Keh-Fei
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (24)