Fast offline transformer-based end-to-end automatic speech recognition for real-world applications

被引:4
|
作者
Oh, Yoo Rhee [1 ]
Park, Kiyoung [1 ]
Park, Jeon Gue [1 ]
机构
[1] Elect & Telecommun Res Inst, Artificial Intelligence Res Lab, Daejeon, South Korea
关键词
connectionist temporal classification; end-to-end; speech recognition; transformer; CTC; ATTENTION; NETWORK; ASR;
D O I
10.4218/etrij.2021-0106
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the recent advances in technology, automatic speech recognition (ASR) has been widely used in real-world applications. The efficiency of converting large amounts of speech into text accurately with limited resources has become more vital than ever. In this study, we propose a method to rapidly recognize a large speech database via a transformer-based end-to-end model. Transformers have improved the state-of-the-art performance in many fields. However, they are not easy to use for long sequences. In this study, various techniques to accelerate the recognition of real-world speeches are proposed and tested, including decoding via multiple-utterance-batched beam search, detecting end of speech based on a connectionist temporal classification (CTC), restricting the CTC-prefix score, and splitting long speeches into short segments. Experiments are conducted with the Librispeech dataset and the real-world Korean ASR tasks to verify the proposed methods. From the experiments, the proposed system can convert 8 h of speeches spoken at real-world meetings into text in less than 3 min with a 10.73% character error rate, which is 27.1% relatively lower than that of conventional systems.
引用
收藏
页码:476 / 490
页数:15
相关论文
共 50 条
  • [1] A Transformer-Based End-to-End Automatic Speech Recognition Algorithm
    Dong, Fang
    Qian, Yiyang
    Wang, Tianlei
    Liu, Peng
    Cao, Jiuwen
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1592 - 1596
  • [2] An End-to-End Transformer-Based Automatic Speech Recognition for Qur?an Reciters
    Hadwan, Mohammed
    Alsayadi, Hamzah A.
    AL-Hagree, Salah
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3471 - 3487
  • [3] Transformer-based Long-context End-to-end Speech Recognition
    Hori, Takaaki
    Moritz, Niko
    Hori, Chiori
    Le Roux, Jonathan
    [J]. INTERSPEECH 2020, 2020, : 5011 - 5015
  • [4] On-device Streaming Transformer-based End-to-End Speech Recognition
    Oh, Yoo Rhee
    Park, Kiyoung
    [J]. INTERSPEECH 2021, 2021, : 967 - 968
  • [5] An Investigation of Positional Encoding in Transformer-based End-to-end Speech Recognition
    Yue, Fengpeng
    Ko, Tom
    [J]. 2021 12TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2021,
  • [6] Multi-Encoder Learning and Stream Fusion for Transformer-Based End-to-End Automatic Speech Recognition
    Lohrenz, Timo
    Li, Zhengyang
    Fingscheidt, Tim
    [J]. INTERSPEECH 2021, 2021, : 2846 - 2850
  • [7] TRANSFORMER-BASED END-TO-END SPEECH RECOGNITION WITH LOCAL DENSE SYNTHESIZER ATTENTION
    Xu, Menglong
    Li, Shengqiang
    Zhang, Xiao-Lei
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 5899 - 5903
  • [8] SIMPLIFIED SELF-ATTENTION FOR TRANSFORMER-BASED END-TO-END SPEECH RECOGNITION
    Luo, Haoneng
    Zhang, Shiliang
    Lei, Ming
    Xie, Lei
    [J]. 2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT), 2021, : 75 - 81
  • [9] A study of transformer-based end-to-end speech recognition system for Kazakh language
    Mamyrbayev Orken
    Oralbekova Dina
    Alimhan Keylan
    Turdalykyzy Tolganay
    Othman Mohamed
    [J]. Scientific Reports, 12
  • [10] TRANSFORMER-BASED ONLINE CTC/ATTENTION END-TO-END SPEECH RECOGNITION ARCHITECTURE
    Miao, Haoran
    Cheng, Gaofeng
    Gao, Changfeng
    Zhang, Pengyuan
    Yan, Yonghong
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 6084 - 6088