New construction of eigenstates and separation of variables for SU(N) quantum spin chains

被引:57
|
作者
Gromov, Nikolay [1 ,2 ]
Levkovich-Maslyuk, Fedor [3 ,4 ]
Sizov, Grigory [5 ]
机构
[1] Kings Coll London, Math Dept, London WC2R 2LS, England
[2] St Petersburg INP, St Petersburg 188300, Russia
[3] KTH Royal Inst Technol, NORDITA, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[4] Stockholm Univ, Roslagstullsbacken 23, SE-10691 Stockholm, Sweden
[5] Ecole Normale Super, LPT, 24 Rue Lhomond, F-75005 Paris, France
来源
基金
欧洲研究理事会;
关键词
Bethe Ansatz; Lattice Integrable Models; FORM-FACTORS; INTEGRABLE MODELS; WEIGHT FUNCTION; BETHE-ANSATZ; SL(N); GL(N); MATRICES;
D O I
10.1007/JHEP09(2017)111
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We conjecture a new way to construct eigenstates of integrable XXX quantum spin chains with SU(N) symmetry. The states are built by repeatedly acting on the vacuum with a single operator B-good(u) evaluated at the Bethe roots. Our proposal serves as a compact alternative to the usual nested algebraic Bethe ansatz. Furthermore, the roots of this operator give the separated variables of the model, explicitly generalizing Sklyanin's approach to the SU(N) case. We present many tests of the conjecture and prove it in several special cases. We focus on rational spin chains with fundamental representation at each site, but expect many of the results to be valid more generally.
引用
收藏
页数:40
相关论文
共 50 条
  • [1] New construction of eigenstates and separation of variables for SU(N) quantum spin chains
    Nikolay Gromov
    Fedor Levkovich-Maslyuk
    Grigory Sizov
    Journal of High Energy Physics, 2017
  • [2] New compact construction of eigenstates for supersymmetric spin chains
    Gromov, Nikolay
    Levkovich-Maslyuk, Fedor
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (09):
  • [3] New compact construction of eigenstates for supersymmetric spin chains
    Nikolay Gromov
    Fedor Levkovich-Maslyuk
    Journal of High Energy Physics, 2018
  • [4] LARGE-N LIMIT OF SU(N) QUANTUM SPIN CHAINS
    AFFLECK, I
    PHYSICAL REVIEW LETTERS, 1985, 54 (10) : 966 - 969
  • [5] Chiral Haldane phases of SU(N) quantum spin chains
    Roy, Abhishek
    Quella, Thomas
    PHYSICAL REVIEW B, 2018, 97 (15)
  • [6] EXACT SOLUTION OF THE SU(Q)(N)-INVARIANT QUANTUM SPIN CHAINS
    DEVEGA, HJ
    GONZALEZRUIZ, A
    NUCLEAR PHYSICS B, 1994, 417 (03) : 553 - 578
  • [7] Concurrence and Quantum Discord in the Eigenstates of Chaotic and Integrable Spin Chains
    Ashouri, Atefeh
    Mahdavifar, Saeed
    Misguich, Gregoire
    Vahedi, Javad
    ANNALEN DER PHYSIK, 2020, 532 (08)
  • [8] Nonthermal eigenstates and slow relaxation in quantum Fredkin spin chains
    Causer, Luke
    Banuls, Mari Carmen
    Garrahan, Juan P.
    PHYSICAL REVIEW B, 2024, 110 (13)
  • [9] A direct proof of dimerization in a family of SU(n)-invariant quantum spin chains
    Bruno Nachtergaele
    Daniel Ueltschi
    Letters in Mathematical Physics, 2017, 107 : 1629 - 1647
  • [10] A direct proof of dimerization in a family of SU(n)-invariant quantum spin chains
    Nachtergaele, Bruno
    Ueltschi, Daniel
    LETTERS IN MATHEMATICAL PHYSICS, 2017, 107 (09) : 1629 - 1647