THE PHIL-LIDAR 2 PROGRAM: NATIONAL RESOURCE INVENTORY OF THE PHILIPPINES USING LIDAR AND OTHER REMOTELY SENSED DATA

被引:17
|
作者
Blanco, A. C. [1 ,2 ]
Tamondong, A. M. [1 ,2 ]
Perez, A. M. C. [1 ,2 ]
Ang, M. R. C. O. [1 ,2 ]
Paringit, E. C. [1 ,2 ]
机构
[1] Univ Philippines, Dept Geodet Engn, Quezon City, Philippines
[2] Univ Philippines, Training Ctr Appl Geodesy & Photogrammetry, Quezon City, Philippines
关键词
LiDAR; agriculture; forest; hydrology; renewable energy; coastal resources;
D O I
10.5194/isprsarchives-XL-7-W3-1123-2015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Philippines embarked on a nationwide mapping endeavour through the Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program of the University of the Philippines and the Department of Science and Technology (DOST). The derived accurate digital terrain models (DTMs) are used in flood models to generate risk maps and early warning system. With the availability of LiDAR data sets, the Phil-LiDAR 2 program was conceptualized as complementary to existing programs of various national government agencies and to assist local government units. Phil-LiDAR 2 aims to provide an updated natural resource inventory as detailed as possible using LiDAR point clouds, LiDAR derivative products, orthoimages and other RS data. The program assesses the following natural resources over a period of three years from July 2014: agricultural, forest, coastal, water, and renewable energy. To date, methodologies for extracting features from LiDAR data sets have been developed. The methodologies are based on a combination of object-based image analysis, pixel-based image analysis, optimization of feature selection and parameter values, and field surveys. One of the features of the Phil-LiDAR 2 program is the involvement of fifteen (15) universities throughout the country. Most of these do not have prior experience in remote sensing and mapping. With such, the program has embarked on a massive training and mentoring program. The program is producing more than 200 young RS specialists who are protecting the environment through RS and other geospatial technologies. This paper presents the program, the methodologies so far developed, and the sample outputs.
引用
收藏
页码:1123 / 1127
页数:5
相关论文
共 15 条
  • [1] QUALITY ASSESSMENT AND CONTROL OF OUTPUTS OF A NATIONWIDE AGRICULTURAL LAND COVER MAPPING PROGRAM USING LIDAR: PHIL-LIDAR 2 PARMAP EXPERIENCE
    Pagkalinawan, H. M.
    Gatdula, N. B.
    Jose, R. P.
    Rollan, T. M.
    Tanada, E. M.
    Magtalas, S. Y.
    Dela Torre, D. G.
    Dela Cruz, P. A.
    Aves, J. L.
    Tan, G. D.
    Apura, R. A.
    Dimalanta, C. P.
    Blanco, A. C.
    37TH INTERNATIONAL SYMPOSIUM ON REMOTE SENSING OF ENVIRONMENT, 2017, 42-3 (W2): : 163 - 170
  • [2] Modelling rating curves using remotely sensed LiDAR data
    Nathanson, Marcus
    Kean, Jason W.
    Grabs, Thomas J.
    Seibert, Jan
    Laudon, Hjalmar
    Lyon, Steve W.
    HYDROLOGICAL PROCESSES, 2012, 26 (09) : 1427 - 1434
  • [3] NATIONWIDE NATURAL RESOURCE INVENTORY OF THE PHILIPPINES USING LIDAR: STRATEGIES, PROGRESS, AND CHALLENGES
    Blanco, A. C.
    Tamondong, A.
    Perez, A. M.
    Ang, M. R. C.
    Paringit, E.
    Alberto, R.
    Alibuyog, N.
    Aquino, D.
    Ballado, A.
    Garcia, P.
    Japitana, M.
    Ignacio, M. T.
    Macandog, D.
    Novero, A.
    Otadoy, R. E.
    Regis, E.
    Rodriguez, M.
    Silapan, J.
    Villar, R.
    XXIII ISPRS Congress, Commission VI, 2016, 41 (B6): : 105 - 109
  • [4] National Inventory of Rabi Pulses in India Using Remotely Sensed Data
    Bhagia, Nita
    Bairagi, G. D.
    Pandagre, Sandeep
    Patel, Gajendra
    Vyas, S. P.
    Kumar, G. N. Naveen
    Ramteke, Indal
    Mesharam, Pritam
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (02) : 285 - 295
  • [5] Development of the Philippine Hydrologic Dataset (PHD) from LiDAR and other remotely-sensed data
    Perez, A. M. C.
    Gaspa, M. C.
    Aloc, D. S.
    Mahor, M. A. P.
    Gonzalez, K. A. C.
    Borlongan, N. J. B.
    De la Cruz, R. M.
    Olfindo, N. T., Jr.
    Blanco, A. C.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VI, 2015, 9644
  • [6] National Inventory of Rabi Pulses in India Using Remotely Sensed Data
    Nita Bhagia
    G. D. Bairagi
    Sandeep Pandagre
    Gajendra Patel
    S. P. Vyas
    G. N. Naveen Kumar
    Indal Ramteke
    Pritam Mesharam
    Journal of the Indian Society of Remote Sensing, 2017, 45 : 285 - 295
  • [7] MODELLING THE CARBON STOCKS ESTIMATION OF THE TROPICAL LOWLAND DIPTEROCARP FOREST USING LIDAR AND REMOTELY SENSED DATA
    Zaki, N. A. M.
    Latif, Z. A.
    Suratman, M. N.
    Zainal, M. Z.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 3 (07): : 187 - 194
  • [8] Predictive mapping of abalone fishing grounds using remotely-sensed LiDAR and commercial catch data
    Jalali, M. Ali
    Ierodiaconou, Daniel
    Monk, Jacquomo
    Gorfine, Harry
    Rattray, Alex
    FISHERIES RESEARCH, 2015, 169 : 26 - 36
  • [9] Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi-spectral remotely sensed data
    Koukoulas, S
    Blackburn, GA
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (03) : 431 - 455
  • [10] Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data
    Park, Taejin
    Lee, Woo-Kyun
    Lee, Jong-Yeol
    Byun, Woo-Hyuk
    Kwak, Doo-Ahn
    Cui, Guishan
    Kim, Moon-Il
    Jung, Raesun
    Pujiono, Eko
    Oh, Suhyun
    Byun, Jungyeon
    Nam, Kijun
    Cho, Hyun-Kook
    Lee, Jung-Su
    Chung, Dong-Jun
    Kim, Sung-Ho
    FOREST SCIENCE AND TECHNOLOGY, 2012, 8 (02) : 89 - 98