Echocardiographic image sequence segmentation using self-organizing maps

被引:0
|
作者
Siqueira, ML [1 ]
Gasperin, CV [1 ]
Scharcanski, J [1 ]
Zielinsky, P [1 ]
Navaux, POA [1 ]
机构
[1] Univ Fed Rio Grande Sul, Porto Alegre, RS, Brazil
关键词
echocardiographic image sequence; segmentation; self-organizing map;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach for echocardiographic image sequence segmentation. The proposed method uses the self-organizing map to approximate the probability density function of the image patterns. The map is post-processed, by the k-means clustering algorithm, in order to detect groups of neurons whose weights are similar. Each segmented image of the sequence is generated by correlation its pixels and cluster found in the map. The best number of clusters is dependent on the application To validate the segmentation procedure, we used a segmented sequence to measure successfully the variation of the interventricular septum width.
引用
收藏
页码:594 / 603
页数:10
相关论文
共 50 条
  • [1] Echocardiographic Image Sequence Segmentation and Analysis Using Self-Organizing Maps
    Mozart L. Siqueira
    Jacob Scharcanski
    Philippe O.A. Navaux
    [J]. Journal of VLSI signal processing systems for signal, image and video technology, 2002, 32 : 135 - 145
  • [2] Echocardiographic image sequence segmentation and analysis using self-organizing maps
    Siqueira, ML
    Scharcanski, J
    Navaux, POA
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2002, 32 (1-2): : 135 - 145
  • [3] Dynamic speckle image segmentation using self-organizing maps
    Dai Pra, Ana L.
    Meschino, Gustavo J.
    Guzman, Marcelo N.
    Scandurra, Adriana G.
    Gonzalez, Mariela A.
    Weber, Christian
    Trivi, Marcelo
    Rabal, Hector
    Passoni, Lucia I.
    [J]. JOURNAL OF OPTICS, 2016, 18 (08)
  • [4] Color Image Segmentation based on Self-organizing Maps
    Geng, Rui
    [J]. ADVANCES IN KEY ENGINEERING MATERIALS, 2011, 214 : 693 - 698
  • [5] Segmentation of hyperspectral images using self-organizing maps
    Sanocki, Pawel
    Kawulok, Michal
    Smolka, Bogdan
    Nalepa, Jakub
    [J]. REAL-TIME IMAGE PROCESSING AND DEEP LEARNING 2021, 2021, 11736
  • [6] Organizing spectral image database using Self-Organizing Maps
    Kohonen, O
    Jääskeläinen, T
    Hauta-Kasari, M
    Parkkinen, J
    Miyazawa, K
    [J]. JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2005, 49 (04) : 431 - 441
  • [7] TEXSOM: Texture segmentation using self-organizing maps
    Ruiz-del-Solar, J
    [J]. NEUROCOMPUTING, 1998, 21 (1-3) : 7 - 18
  • [8] Satellite Image Segmentation Using Self-Organizing Maps and Fuzzy C-Means
    Awad, Mohamad M.
    Nasri, Ahmad
    [J]. 2009 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT 2009), 2009, : 398 - +
  • [9] A New Segmentation Approach in Structured Self-Organizing Maps for Image Retrieval
    Patino-Escarcina, Raquel E.
    Ferreira Costa, J. Alfredo
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING, PROCEEDINGS, 2009, 5788 : 441 - +
  • [10] A Geographical Approach to Self-Organizing Maps Algorithm Applied to Image Segmentation
    Korting, Thales Sehn
    Garcia Fonseca, Leila Maria
    Camara, Gilberto
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, 2011, 6915 : 162 - 170