Numerical investigation on the swimming mode and stable spacing with two self-propelled fish arranged in tandem

被引:13
|
作者
Ren, Kai [1 ,2 ,3 ]
Yu, Jiancheng [1 ,2 ]
Li, Hongbo [1 ,2 ,3 ]
Feng, Hao [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Chinese Acad Sci, Inst Robot & Intelligent Mfg, Shenyang 110169, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
Fish school; Stable spacing; Swimming modes; Self-propelled; Wake structures; Computational fluid dynamics; TAIL BEAT FREQUENCY; ENERGY; SCHOOL; HYDRODYNAMICS; PERFORMANCE; CONSUMPTION; KINEMATICS; BODY;
D O I
10.1016/j.oceaneng.2022.111861
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
It is a long-held perception that fish may obtain a hydrodynamic advantage from clustering. This study attempts to determine whether all the fish in school gain the same energy advantage in different swimming modes. The numerical investigation based on two self-propelled fish arranged in tandem in carangiform, anguilliform, and sine curve swimming modes was conducted. It was found that fish could spontaneously form different steadily spaced queues, and discrete points of stable spacing were classified as proximity and wake interference points according to their swimming speed. The stable points were the result of the combined effect of wake impact and vortex modulation. From the carangiform to anguilliform to sine curve swimming modes, as the head amplitude increased, the vortex modulation of the rear fish gradually decreased, while the wake impact gradually increased. Therefore, the rear fish in carangiform swimming mode had lower energy consumption than that of the front, whereas the opposite was true in sine curve swimming mode. In addition, some interesting phenomena related to the vortex core arrangement were introduced at different stable points in these three swimming modes. The present results may enrich the scope of research on the hydrodynamic dominance of aquatic organisms in collective behaviour.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Hydrodynamic Interaction of Two Self-Propelled Fish Swimming in a Tandem Arrangement
    Yang, Dewu
    Wu, Jie
    FLUIDS, 2022, 7 (06)
  • [2] Numerical investigation on energetically advantageous formations and swimming modes using two self-propelled fish
    Ren, Kai
    Yu, Jiancheng
    Chen, Zhier
    Li, Hongbo
    Feng, Hao
    Liu, Kai
    OCEAN ENGINEERING, 2023, 267
  • [3] Numerical simulation of the hydrodynamics of self-propelled fish swimming
    Wang, L. (wangliang49101@163.com), 1600, Chinese Journal of Theoretical and Applied Mechanics Press (44):
  • [4] Intermittent swimming of two self-propelled flapping plates in tandem configuration
    Kang, Linlin
    Lu, Xi-Yun
    Cui, Weicheng
    PHYSICS OF FLUIDS, 2022, 34 (01)
  • [5] An energetics analysis of fish self-propelled swimming
    ZhongWei Wang
    YongLiang Yu
    BingGang Tong
    Science China(Physics,Mechanics & Astronomy), 2018, (07) : 95 - 98
  • [6] An energetics analysis of fish self-propelled swimming
    Wang, ZhongWei
    Yu, YongLiang
    Tong, BingGang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (07)
  • [7] An energetics analysis of fish self-propelled swimming
    ZhongWei Wang
    YongLiang Yu
    BingGang Tong
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [8] Numerical investigation of a pair of self-propelled AUVs operating in tandem
    Rattanasiri, Pareecha
    Wilson, Philip A.
    Phillips, Alexander B.
    OCEAN ENGINEERING, 2015, 100 : 126 - 137
  • [9] Numerical simulations of self-propelled swimming of 3D bionic fish school
    WU ChuiJie WANG Liang State Key Laboratory of Structural Analysis for Industrial EquipmentDalian University of TechnologyDalian China Research Center for Fluid DynamicsPeoples Liberation Army University of Science and TechnologyNanjing China
    中国科学:技术科学, 2010, 40 (03) : 334 - 334
  • [10] Numerical simulations of self-propelled swimming of 3D bionic fish school
    WU ChuiJie1 & WANG Liang2 1 State Key Laboratory of Structural Analysis for Industrial Equipment
    2 Research Center for Fluid Dynamics
    Science in China(Series E:Technological Sciences), 2009, (03) : 658 - 669